Northwestern Division Missouri River Basin Water Management Division #### Missouri River Mainstem System ## 2003-2004 Annual Operating Plan Annual Operating Plan Process 51 Years Serving the Misssouri River Basin #### MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM #### Annual Operating Plan 2003-2004 | List o | f Table | S | ii | |--------|----------|---|---| | List o | f Plates | | ii | | List o | f Abbre | eviations | iii | | Defin | ition of | Terms | iv | | | | | | | I. | FORI | EWORD | 1 | | II. | PURI | POSE AND SCOPE | 2 | | III. | | TER MANUAL REVIEW AND UPDATE | | | | AND | ESA CONSULTATIONS | 2 | | IV. | FUTU | URE WATER SUPPLY – AUGUST 2003 – DECEMBER 2004 | 3 | | V. | ANN | UAL OPERATING PLAN FOR 2003-2004 | 5 | | | A. | General | 5 | | | В. | 2003 – 2004 AOP Simulations | | | | C. | Operation During the 2003 Navigations and T&E | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | Nesting Season | 9 | | | D. | Operation for the Balance of the 2003 Navigation Season | | | | E. | Operating Plan for the Winter of 2003-2004 | 11 | | | F. | Operations During the 2004 Navigation Season | | | VI. | SUM | MARY OF RESULTS EXPECTED IN 2003-2004 | 19 | | | A. | Flood Control | 19 | | | B. | Water Supply and Water Quality Control | 19 | | | C. | Irrigation | 19 | | | D. | Navigation | 19 | | | E. | Power | | | | F. | Recreation, Fish and Wildlife | | | | G. | System Storage | | | | Н. | Summary of Water Use by Functions | 23 | | VII. | TENT | ΓΑΤΙVE PROJECTION OF OPERATIONS THROUGH | | | | MAR | CH 2010 | 23 | #### **TABLES** | I | Natural and Gross Water Supply at Sioux City | 4 | |------|---|----| | II | Gavins Point Releases Needed to Meet Full Service Flow Targets | 6 | | III | Navigation Service Support for the 2004 Season | 15 | | IV | Reservoir Unbalancing Schedule | 16 | | V | MRNRC Recommended Reservoir Elevation Guidelines for Unbalancing | 17 | | VI | Peaking Capability and Sales (Steady Release) | 21 | | VII | Energy Generation and Sales (Steady Release) | 21 | | VIII | Peaking Capability and Sales (Flow-to-Target Release) | 22 | | IX | Energy Generation and Sales (Flow-to-Target Release) | 22 | | X | Anticipated December 31, 2004 Storage in System | 24 | | XI | Missouri River Mainstem System Water Use for Calendar Years 2002, 2003, | | | | and 2004 Above Sioux City, Iowa - Steady-Release | 25 | | XII | Missouri River Mainstem System Water Use for Calendar Years 2002, 2003, | | | | and 2004 Above Sioux City, Iowa - Flow-to-Target | 26 | | | | | #### **PLATES** | 1 | Missouri River Basin Map | |----|---| | 2 | Summary of Engineering Data – Missouri River Mainstem System Reservoirs | | 3 | System Storage | | 4 | Gavins Point Releases | | 5 | Fort Peck Elevations and Releases | | 6 | Garrison Elevations and Releases | | 7 | Oahe Elevations and Releases | | 8 | Fort Randall Elevations and Releases | | 9 | Reservoir Release and Unregulated Flow | | 10 | System Gross Capability and Average Monthly Generation | | 11 | Tentative Five Year Extension of 2002-2003 AOP System Storage | | 12 | Tentative Five Year Extension of 2002-2003 AOP Fort Peck | #### **Exhibits** #### **ABBREVIATIONS** AOP - annual operating plan ac.ft. - acre-feet AF - acre-feet B - Billion cfs - cubic feet per second COE - Corps of Engineers CY - calendar year (January 1 to December 31) elev - elevation ft - feet FY - fiscal year (October 1 to September 30) GIS - Geographic Information System GWh - gigawatt hour KAF - 1,000 acre-feet Kcfs - 1,000 cubic feet per second kW - kilowatt kWh - kilowatt hour M - million MAF - million acre-feet MRBA - Missouri River Basin Association MRNRC - Missouri River Natural Resources Committee msl - mean sea level MW - megawatt MWh - megawatt hour plover - piping plover pp - powerplant RCC - Reservoir Control Center RM - river mile tern - interior least tern tw - tailwater USFWS - United States Fish and Wildlife Service USGS - United States Geological Survey yr - year #### **DEFINITION OF TERMS** Acre-foot (AF, ac-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or 325,850 gallons. <u>Cubic foot per second</u> (cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute. The volume of water represented by a flow of 1 cubic foot per second for 24 hours is equivalent to 86,400 cubic feet, approximately 1.983 acre-feet, or 646,272 gallons. <u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time. <u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted. <u>Drainage basin</u> is a part of the surface of the earth that is occupied by drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded water. <u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained. Runoff in inches shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. #### MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM #### Annual Operating Plan 2003 - 2004 #### I. FOREWORD This Annual Operating Plan (AOP) presents pertinent information and plans for operating the Missouri River Mainstem Reservoir System (System) through December 2004 under widely varying water supply conditions. It provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the upcoming year to serve the Congressionally authorized project purposes. Regulation is directed by the Missouri River Basin Water Management Division (formerly the Reservoir Control Center), Northwestern Division, U.S. Army Corps of Engineers (Corps). A map of the Missouri River Basin (Basin) is shown on *Plate 1* and the summary of engineering data for the six System projects is shown on *Plate 2*. This plan may require adjustments when substantial departures from expected runoff occur, to meet emergencies, or to meet the provisions of other applicable law, including the Endangered Species Act (ESA) and the conclusion of ongoing Corps and U.S. Fish and Wildlife (USFWS) consultation under Section 7 of that Act. Prior to the 1998-1999 AOP, a System description and discussion of the typical operation, a historic summary of the previous year's operation, and the plan for future operation was included in one document. Since the 1998-1999 AOP this information has been published in separate reports available upon request. This document provides the plan for future operation of the System. To receive a copy of either the updated version of the "System Description and Operation," dated Spring 2002, or the "Summary of Actual Calendar Year 2002 Operations dated May 2003," contact the Missouri River Basin Water Management Division at 12565 West Center Road, Omaha, Nebraska 68144-3869, phone (402) 697-2676. Both reports are currently available at the "Reports and Publications" link on our web site at: www.nwd-mr.usace.army.mil/rcc. The "Summary of Actual Calendar Year 2003 Operations" will be available at the same site in the spring of 2004. #### II. PURPOSE AND SCOPE Beginning in 1953, projected System operation for the year ahead was developed annually as a basis for advance coordination with the various interested Federal, state, and local agencies and private citizens. Also beginning in 1953, a coordinating committee was organized to make recommendations on each upcoming year's System operation. The Coordinating Committee on Missouri River Mainstem Reservoir Operations held meetings semiannually until 1981 and provided recommendations to the Corps. In 1982, the Committee was dissolved because it did not conform to the provisions of the Federal Advisory Committee Act. Since 1982, to continue providing a forum for public participation, one or more open public meetings are held semiannually in the spring and fall. The fall public meeting is conducted to take public input on a draft of the AOP, which typically is published in early October each year. The spring meetings are conducted to update the public on the current hydrologic conditions and projected System operation for the remainder of the year. The spring public meetings were held at the following locations: Kansas City, Missouri on April 7, 2003; Yankton, South Dakota on April 8, 2003; and Nebraska City, Nebraska on April 10, 2003. The attendees were given an update regarding the outlook for 2003 runoff and projected operation for the remainder of 2003. Three fall public meetings on this Draft 2003-2004 AOP will be held. The meetings are scheduled for October 28, 2003 in Pierre, South Dakota; October 29, 2003 in Omaha, Nebraska; and October 30, 2003 in Columbia, Missouri. Preliminary Draft AOP data was presented to the Missouri River
Basin Association (MRBA) on July 28, 2003. ## III. MAINSTEM MASTER MANUAL REVIEW AND UPDATE AND ESA CONSULTATIONS In August 2001, the Corps released the Revised Draft Environmental Impact Statement (EIS) on the Missouri River Master Water Control Manual Review and Update (Review and Update) that presented the impacts associated with a number of potential Water Control Plan alternatives. The next step in the EIS process is to prepare and circulate a Final EIS that presents a preferred alternative (PA). The goal is to identify a PA that serves all of the Congressionally authorized project purposes and fulfills the Corps responsibilities to Federally recognized Native American Tribes, while complying with the Endangered Species Act (ESA) and other applicable laws. To that end, the Corps has reinitiated ESA consultation with the USFWS on a proposed action that includes a water control plan for publication in an updated Missouri River Mainstem Reservoir System Master Manual (Master Manual). This is a re-initiation of consultation because the Corps and the USFWS previously had consulted on the current Water Control Plan presented in the existing Master Manual. That consultation resulted in a Final Biological Opinion from the USFWS dated November 2000 (November 2000 BiOp). The November 2000 BiOp called for changes in releases from Gavins Point Dam to include a "spring rise" and a "lower summer releases". The spring rise component called for an increase in releases from Gavins Point Dam of from 15,000 to 20,000 cubic feet per second (cfs) above full navigation service levels for a 4-week time period (includes a week long gradual increase and a week long gradual decrease to and from the specified spring rise amount). The spring rise was to be conducted in each year that runoff was forecast to be at or above lower quartile, but less than upper decile, and was to occur in the window of time from May 1 through June 15. The November 2000 BiOp anticipated that the spring rise would be provided on average about one-third of the years. The November 2000 BiOp also called for lower summer releases from Gavins Point Dam in each year when evacuation of water stored in the flood control storage would not interfere with the provision of this water control plan component. The November 2000 BiOp called for a step-down to the 25,000-cfs release level beginning on June 21 each year, followed by 21,000 cfs from July 15 to August 15, when releases would be returned to the 25,000-cfs level until September 1. The November 2000 BiOp did not prescribe releases after September 1. Along with the recommended release changes, the November 2000 BiOp called for the construction or restoration of a substantial amount of habitat for the endangered species and species-specific actions such as support to fish hatcheries and monitoring activities. On July 30, 2003, the Corps transmitted a Biological Assessment to the USFWS on the proposed action. Subsequent to that correspondence the Corps and the USFWS agreed to collaboratively develop a new biological assessment that will include new information developed since the November 2000 BiOp. This new information includes, but is not limited to, results of studies indicating that the spring rise and lower summer releases will not provide the physical attributes assumed by the USFWS in the November 2000 BiOp. The new biological assessment will also discuss the question of whether the spring rise and lower summer releases described in the November 2000 BiOp are compatible with, and could be implemented under a recent decision of the Eighth Circuit Court of Appeals, South Dakota v. Ubbelohde, 330 F.3d 1014 (8th Cir. 2003), given the impacts on flood control and navigation. The new biological assessment will also include information on actions designed to avoid jeopardy to the listed species without implementing the spring rise or lower summer releases described in the November 2000 BiOp. The Corps expects the new biological assessment to be complete by the end of October 2003. The operation described in this Draft AOP is designed to meet the operational objectives presented in the current Master Manual. It is anticipated that the ESA consultation, as well as the publication of a Final EIS that presents a preferred alternative, publication of a Record of Decision on the EIS, and the publication an updated Master Manual will be complete before March 1, 2004. Based upon the results of those processes, changes to the Water Control Plan presented in this document may occur and will be set forth in the Final AOP. #### IV. FUTURE WATER SUPPLY: AUGUST 2003 - DECEMBER 2004 In preparation for developing the 2003-2004 AOP, it was necessary to estimate the appropriate water supplies to the reservoirs for the period August 2003 through December 2004. The period August through February is normally a period of relatively low and stable inflows and can be forecast with reasonable reliability. Therefore, the August 1 most likely runoff scenario is used as input to the Basic reservoir regulation simulation in the AOP studies for this period. Two other runoff scenarios based on the August 1 most likely runoff scenario were developed for the same period. Forecasts of 80 and 120 percent of the most likely runoff scenarios are used to give a range of monthly inflows leading up to March 1, 2004. These simulations are referred to as the 80 and 120 percent of Basic simulations. Inflows to the system after March 1 are dependent on many factors, which are impossible to forecast at the time of the AOP simulations. Therefore, simulations for the March 1, 2004 to February 28, 2005 time period use five statistically derived inflow scenarios based on an analysis of water supply records from 1898 to 1997. This approach provides a good range of simulations for dry, average, and wet conditions, and eliminates the need to forecast future precipitation, which is very difficult. The five statistically derived inflows are identified as the Upper Decile, Upper Quartile, Median, Lower Quartile and Lower Decile runoff conditions. Upper Decile runoff (34.5 MAF) has a 1 in 10 chance of being exceeded, Upper Quartile (30.6 MAF) has a 1 in 4 chance of being exceeded, and Median (24.6 MAF) has a 1 in 2 chance of being exceeded. Lower Quartile runoff (19.5 MAF) has a 1 in 4 chance of the occurrence of less runoff, and Lower Decile (15.5 MAF) has a 1 in 10 chance of the occurrence of less runoff. There is still a 20 percent chance that a runoff condition may occur that has not been simulated; i.e., a 10 percent chance runoff could be lower than Lower Decile, and a 10 percent chance runoff could be greater than Upper Decile. The Upper Decile and Upper Quartile simulations extend from the end of the 120 percent of Basic simulation through February 2005. Likewise, the Median simulation extends from the end of the Basic simulation, and the Lower Quartile and Lower Decile simulations extend from the end of the 80 percent of Basic simulation through February 2005. The estimated natural flow 1/ at Sioux City, the corresponding post-1949 water use effects, and the net flow 2/ available above Sioux City are shown in *Table I*, where several water supply conditions are quantified for the periods August 2003 through February 2004 and the runoff year March 2004 through February 2005. The natural water supply for calendar year (CY) 2003 (actual January 2003 through July 2003 runoff plus the August 1 most likely runoff) is estimated to total 19.5 MAF. TABLE I NATURAL AND GROSS WATER SUPPLY AT SIOUX CITY | | Natural 1/ | Post-1949 Depletions | <u>Net</u> <u>2</u> / | | |---------------------------------|------------------------|---------------------------|-----------------------|--| | | | dumes in 1,000 Acre-Feet) | | | | August through February 2004 (M | lost Likely Runoff Sce | enario) | | | | Basic | 6,700 | +100 | 6,800 | | | 120% Basic | 8,000 | +200 | 8,200 | | | 80% Basic | 5,300 | +400 | 5,700 | | Runoff Year March 2004 through February 2005 (Statistical Analysis of Past Records) | Upper Decile | 34,500 | -2,100 | 32,400 | |----------------|--------|--------|--------| | Upper Quartile | 30,600 | -2,000 | 28,600 | | Median | 24,600 | -2,400 | 22,200 | | Lower Quartile | 19,500 | -2,600 | 16,900 | | Lower Decile | 15,500 | -2,600 | 12,900 | 1/ The word "Natural" is used to designate flows adjusted to the 1949 level of basin development, except that regulation and evaporation effects of the Fort Peck Reservoir have also been eliminated during its period of operation prior to 1949. 2/ The word "Net" represents the total streamflow after deduction of the post-1949 irrigation, upstream storage, and other use effects. #### V. ANNUAL OPERATING PLAN FOR 2003-2004 A. General. The anticipated operation described in this AOP is designed to meet the operational objectives presented in the current Master Manual, which was first published in the 1960's. Consideration has been given to all of the authorized project purposes, and to the needs of threatened and endangered (T&E) species, and relies on a wealth of operational experience. Operational experience available for preparation of the 2003-2004 AOP includes 13 years of operation at Fort Peck Reservoir (1940) by itself, plus 50 years of System experience as Fort Randall (1953), Garrison (1955), Gavins Point (1955), Oahe (1962), and Big Bend (1964) have been brought progressively into System operation. This operational experience includes lessons learned during the 6 consecutive years of drought of the late 1980's through 1992, the high runoff period that followed and the current 4-year drought. Runoff during the period 1993 to 1999 was greater than Upper Quartile level during 5 of those 7 years, including the record 49.0 MAF of runoff in 1997. In addition to the long period of actual operational experience, many background operational studies for the completed System are available for reference This operational experience has
shown that additional water conservation measures, beyond the specific technical criteria published in the current Master Manual, may be required to meet the operational objectives of the current Master Manual, if System water-in-storage (storage) is below 52 MAF on July 1 of any year. These additional conservation measures may be necessary during drought to offset increased release requirements for water supply due to degradation (lowering) of the channel bed, and to serve navigation while meeting the Corps' obligations, in consultation with the USFWS, under the ESA. After each runoff year (March 1 through February 28) an analysis is performed to determine how much additional water conservation, if any, is needed to compensate for releases in excess of the specific technical criteria in that runoff year. If additional water conservation measures are called for, they are applied to the next runoff year's operation. A reanalysis of the average monthly Gavins Point releases needed to meet service level target requirements was completed in 1999. The study used the Daily Routing Model (DRM) for the period 1950 to 1996. As part of this study, the relationship between annual runoff upstream of Sioux City and the average Gavins Point Dam release required for the navigation season was analyzed. The study concluded that generally more water was needed downstream to support navigation during years with below normal upper basin runoff than during years with higher upper basin runoff. Therefore, regulation studies since 1999 use two levels of Gavins Point release requirements: one for Median, Upper Quartile, and Upper Decile runoff scenarios, and another for Lower Quartile and Lower Decile scenarios. The updated release requirements for full service navigation used in the development of the 2003-2004 AOP are given in *Table II*. Releases required for minimum service navigation support are 6,000 cfs less than the numbers provided in *Table II*. A final report detailing the procedures used in this study is available on our web site. # TABLE II GAVINS POINT RELEASES NEEDED TO MEET FULL SERVICE FLOW TARGETS 1950 - 1996 (Discharges in 1,000 cfs) | Runoff | | <u>Month</u> | | | | | | | | | | |----------------------|------------|--------------|------------|------------|------------|------------|------------|------|----------------|--|--| | <u>Scenario</u> | <u>Apr</u> | <u>May</u> | <u>Jun</u> | <u>Jul</u> | <u>Aug</u> | <u>Sep</u> | <u>Oct</u> | Nov | <u>Average</u> | | | | | | | | | | | | | | | | | Median, Upper Quarti | • | | | | | | | | | | | | Upper Decile | 26.7 | 28.0 | 27.9 | 31.6 | 33.2 | 32.6 | 32.0 | 31.1 | 30.4 | | | | T 0 11 | | | | | | | | | | | | | Lower Quartile, | | | | | | | | | | | | | Lower Decile | 29.8 | 31.3 | 31.2 | 34.3 | 34.0 | 33.5 | 33.1 | 31.2 | 32.3 | | | Gavins Point releases during the navigation season are based on a service level determination in accordance with the March 15 and July 1 storage checks presented in the current Master Manual. In general, releases from Gavins Point Dam are adjusted as needed to meet target flow levels on the lower river. However, during the nesting season of the endangered interior least tern (tern) and the threatened piping plover (plover) care must be taken to avoid impacts to nesting areas. These two bird species are listed as Threatened and Endangered (T&E) under the ESA and are protected under that Act. Several different scenarios have been used in past years to operate the System during the nesting season. Under the Steady-Release (SR) scenario, the release from Gavins Point Dam is set in mid-May to the level expected to be required to meet downstream flow targets through August and held at that level until the end of the nesting season. This operation results in releases that exceed the amount necessary to meet downstream flow targets during the early portion of the nesting season, and may result in targets being missed if basin conditions are drier than expected during the summer. Gavins Point releases, under the Flow-to-Target (FTT) scenario, are adjusted as needed throughout the nesting season to meet downstream flow targets and would typically result in increased releases as the nesting season progresses. This is due to reduced tributary inflows downstream as the summer heat builds, evaporation increases, and precipitation wanes. Increasing releases as the nesting season progresses can inundate nests and chicks on low-lying habitat. The Flow-to-Target scenario conserves more water in the System than the Steady-Release scenario (approximately 600,000 AF) which keeps the lake levels at the upper three System projects at relatively higher levels. The Flow-to-Target scenario also ensures that targets on the lower river are met throughout the nesting season. A new scenario for Gavins Point releases, which combines features of the other two options, was used during the 2003-nesting season. This scenario, called the Steady Release – Flow-to-Target (SR-FTT) scenario, sets Gavins Point releases at an initial steady rate, and then allows releases to be adjusted upward during the nesting season to meet downstream flow target. **B.** 2003-2004 AOP Simulations. One complete set of Steady-Release (SR) simulations for the 2004 runoff year is shown in the final section of this draft AOP as studies 4 through 8. March 15 and July 1 System storage checks from the current water control plan (CWCP) determine the level of support to navigation flows. A steady-release from Gavins Point from May 15 through August 31 is shown to prevent T&E bird species from nesting at low elevations and thereby help protect them from inundation. The August release shown in Table II, adjusted to the forecasted service level based on the July 1 System storage check, is used from May 15 through August 31. Two additional simulations are presented for the median runoff condition. A Median Flow-to-Target (FTT) simulation is shown as Study 9, and a Median Steady-Release - Flow-to-Target (SR-FTT) simulation is shown as Study 10. Although the maximum mid-May through August release for the Median FTT simulation is shown as 27,200 cfs in study 9, releases could be greater if needed to maintain the appropriate level of downstream flow support. The SR-FTT simulation has a 26,000 cfs Gavins Point release from May 15 through June 30, and 28,000 cfs in July and August. The Gavins Point releases shown in this and previous AOPs are not absolute. Adjustments are made as necessary based on hydrologic conditions to meet the navigation service level as determined by the March 15 and July 1 System storage checks. Under the SR operating plan, a forecast of releases needed in August is made at the start of the nesting season based on hydrologic conditions in the basin. Once set at that level, releases are not changed during the nesting season unless a reduction in releases can be made and maintained throughout the remainder of the nesting season. A FTT regulation was conducted successfully during the 2001 and portions of the 2002 nesting season. After consulting with the USFWS in the spring of 2003 the SR-FTT operation was used with an initial steady release of 26,000 cfs. This alternative made a larger amount of habitat available early in the nesting season and saved additional water in the upper three reservoirs than a SR operation. The SR-FTT operation also provided certainty for downstream users that releases could be increased as needed to meet flow targets. Most importantly, the T&E birds also faired well under this operation in 2003, due in large part to the timely rains that fell in the lower basin which allowed releases to remain at the 26,000 cfs level through almost the entire nesting season. The specific technical criteria for the September 1 storage check, which is used to determine winter release rates, were not used in the AOP simulations. A minimum Gavins Point release of 12,500 cfs was used for all simulations for the winter 2003-2004 and the winter 2004-2005. This will provide downstream winter flows sufficient to allow the operation of downstream powerplants and water supply intakes, as provided for in the current Master Manual, and is based on past operational experience. Application of the specific technical criteria for the September 1 storage check would result in winter releases in 2004-2005 for the Upper Decile simulation above the 12,500 cfs level, but Gavins Point winter releases will be held to 12,500 cfs as a water conservation measure during the current drought. If System storage on July 1, 2004 is below 52 MAF, additional water conservation would be implemented to compensate for releases made in excess of the specific technical criteria during the 2003 runoff year. Excess releases for the 2003-2004 water year are estimated as follows: Between March 1 and March 13, 2003 Gavins Point releases were above the 10,000 cfs minimum winter release deemed necessary for downstream water supply. The volume of excess water released during this period was 64,000 acre-feet (AF). In late April 2003 Gavins Point releases were increased above the level required to meet minimum service flows to prevent T&E bird species from nesting at low elevations. Later in the nesting season, Gavins Point releases were restricted to level that did not meet minimum service targets by an order from the District Court for the District of Columbia. The net effect of these two actions during the nesting season was an excess release of 700,000 AF above minimum service flows. If the 2003-2004 winter releases average 12,500 cfs as shown in the AOP studies, an additional 451,000 AF above the 10,000 cfs minimum will be released. Therefore, an estimated total of 1.2 MAF of additional releases above the specific technical criteria will be released between March 1, 2003 and February 29, 2004. If System Storage on July 1, 2004 is greater than 52 MAF, no navigation season shortening would be implemented. Only the Median, Lower
Quartile, and Lower Decile simulations show System storage below 52 MAF on July 1, 2004. The simulations for those three runoff scenarios also show that application of the specific technical criteria result in minimum service throughout the 2004 navigation season. Shortening of the 2004 navigation season is therefore the only available option for additional water conservation. If the simulations verify, the 2004 navigation season will be shortened 40 days for Median runoff and 39 days for Lower Quartile and Lower Decile runoff to recover the 1.2 MAF of storage. Since higher Gavins Point releases are required for Lower Quartile and Lower Decile runoff to meet minimum service navigation flows, each day at 10,000 cfs results in a greater volume saved compared to Median runoff due to the larger difference between navigation and non-navigation releases. The Upper Quartile and Upper Decile simulations show that System storage on July 1 will be above 52 MAF, and therefore the navigation season would not be shortened to compensate for the additional water released above the specific technical criteria. During the late 1980's to early 1990's drought years, a two-day-down, one-day-up peaking cycle from Gavins Point was utilized. This regulation provided for lower flows for two out of three days to conserve water in the System while ensuring that T&E bird species did not nest on low-lying habitat. We have not included a peaking cycle in any of the simulations because of concerns voiced by the USFWS regarding negative impacts to river fish. Intrasystem releases are adjusted to best serve the multiple-purpose functions of the projects with special emphasis placed on regulation for non-listed fisheries starting in early April and for T&E bird species beginning in early May and continuing through August. Gavins Point releases for all runoff conditions are at less than full service flows due to low System storage. None of the simulations reach the desired 57.1 MAF System storage level on March 1, 2005. The Lower Quartile, Median, Upper Quartile and Upper Decile simulations include releases that provide a steady to rising lake level in the three large upper reservoirs during the spring fish spawn period. Similar regulation in the past has resulted in a higher fish reproduction success. As previously stated, Gavins Point releases will not be cycled to conserve water under any of the five studied runoff scenarios. However, it may be necessary to cycle releases for flood control operations during the T&E species-nesting season. Actual System operation from January 1 through July 31, 2003 and the operating plans for each project for the remainder of 2003 with the Basic simulation and for CY 2004 using the five runoff scenarios described on page 4 are presented on *Plates 3 through 8*, inclusive. An exception is the omission of Big Bend, since storage at that project is relatively constant and average monthly releases are essentially the same as those at Oahe. These plates also show, on a condensed scale, actual operations during the period 1953 through 2002. **Plate 9** illustrates for Fort Peck, Garrison, Oahe, and Gavins Point Dams the actual reservoir releases (Regulated Flow) as well as the Missouri River flows (Unregulated Flow) that would have resulted if the reservoirs were not in place during the period January 2002 through July 2003. **Plate 10** presents past and simulated gross monthly, average power generation, and gross peaking capability for the System. Operation during the 2003 Navigation and T&E Species Nesting Seasons. The 2003 navigation season opened on the normal opening date of April 1 at the mouth near St. Louis. In late April when piping plovers began to initiate nesting activity, Gavins Point releases were increased to 26,000 cfs in accordance with the plan developed in consultation with the USFWS and approved in their April 21, 2003 Supplemental Biological Opinion. Gavins Point releases were held at 26,000 cfs from April 28 through July 8 when they were reduced to 25,000 cfs to comply with an order from the Federal District Court for the District of Columbia which required the Corps to adjust releases to comply with the November 2000 BiOp. Releases were then increased back to 26,000 cfs on July 29 to meet downstream targets and to comply with a ruling from the 8th Circuit Court. Releases remained at 26,000 cfs while discussions were held to determine which Federal Court Order had precedent and standing. Following a determination that the 8th Circuit Court ruling did not yet conflict with the D.C. District Court Order, releases were reduced to 25,000 cfs on August 11 and to 21,000 cfs on August 12. Prior to the release reduction a short period of time was given for river interests to protect their property and for those vessels that could not operate at the lower flow levels to safely leave the river. Continuing to follow the D.C. District Court Order, release increases were initiated on August 15 and a release rate of 25,000 cfs was reached on August 16. At that time, this release was 2,000 cfs less than that required to meet minimum service navigation flows at downstream targets. Releases remained at 25,000 cfs until September 1 when they were stepped up in 2000 cfs increments per day to the level necessary to meet minimum service flow targets downstream (30,500 cfs). On August 25, 2003 word was received from Omaha District that the last of the chicks had fledged and that all constraints on System operations due to tern and plover nesting could be removed. **D.** Operation for the Balance of the 2003 Navigation Season. Releases through the fall season were adjusted as needed to provide minimum service (6,000 cfs less than full service) flow support to navigation as computed by the July 1 System storage check. System storage was 45.1 MAF on July 1, 2003, substantially less than the 59.0 MAF minimum storage required to provide full service flows. The current storage is also much less than the 50.5 MAF July 1 level required for greater than minimum service flows; therefore, a significant System storage gain will have to occur before a service level greater than minimum service is provided. The 2003 navigation season was reduced by 6 days to compensate for additional water used during the winter of 2002-2003 to provide downstream water supply. The 2003 season shortening would have been greater had the flows provided during the summer of 2002 been at minimum service rather than several thousand cfs less during July through mid August. This period of reduced flows offset some of the extra water that was released during the previous winter period and this resulted in a reduction in the number of days of season shortening. The total runoff for 2003 is expected to be 19.5 MAF. All three sources of runoff into the System (mountain snowpack, plains snowpack and rainfall) have been below normal in 2003. System storage was 43.1 MAF on December 1 at the close of the 2002 navigation season. The winter of 2002-2003 brought virtually no significant plains snowpack. The mountain snowpack peaked in the reach above Fort Peck at 92 percent of normal on April 8, which was about 1 week earlier than normal. The mountain snowpack in the reach between Fort Peck and Garrison peaked at 101 percent of normal on April 9. Runoff in January and February were 66 and 65 percent of normal, respectively. March produced 102 percent of normal as the warmer temperatures melted some of the low elevation mountain snow. March is the only month this year with above normal runoff. April was only 57 percent of normal. The months of May, June, and July were well below average at 78, 82 and 54 percent of normal, respectively, because of the below normal mountain snowmelt above Fort Peck and the overall drought conditions upstream. The closing dates for ending the 2003 navigation season will be November 16 at Sioux City, November 18 at Omaha, November 19 at Nebraska City, November 21 at Kansas City, and November 25 at the mouth of the Missouri River near St. Louis. Simulations for the August 1 to December 1 period indicate that 2.4 billion kilowatt hours (kWh) of energy will be generated by the System powerplants, 1.3 billion kWh below normal. <u>Fort Peck Dam</u> releases will average 7,000 cfs through mid-September, and then be reduced to the minimum 4,000 cfs for the remainder of the 2003 navigation season. Fort Peck Lake is expected to decline 1.3 feet from elevation 2212.3 feet above mean sea level (msl) to 2211.0 feet msl by the end of the navigation season, 22.8 feet lower than the 1967-2002 long-term average. Garrison Dam releases will average 21,000 cfs until mid-September, then gradually be lowered to the minimum 10,000 cfs by late September until the end of the navigation season. The level of Lake Sakakawea is expected to decline by 3.3 feet from elevation 1826.1 feet msl to 1822.8 feet msl by the end of the navigation season, 15.0 feet below the long-term average. Oahe Dam releases will be reduced from an August average of 26,300 cfs to 8,000 cfs in late November to achieve the scheduled Fort Randall drawdown to elevation 1337.5 feet msl by the end of the navigation season. Releases will be adjusted to serve the variable power loads. Lake Oahe will lower steadily by 5.5 feet throughout the period from elevation 1586.4 to 1580.9 feet msl by the close of the navigation season, 20.4 feet lower than the long-term average. Big Bend Dam releases will generally parallel those from Oahe. Lake Sharpe will fluctuate between 1420.0 and 1421.0 feet msl for weekly cycling during high power load periods. Reservoir fluctuations of a foot are scheduled during most weeks in order to follow peaking power demands. Storage lost during the week is regained during the succeeding weekend period of lower power demands. Fort Randall Dam releases will generally parallel those from Gavins Point. Lake Francis Case will fall steadily during the
August-through-November period from the end-of-July elevation of 1354.0 feet msl to 1337.5 feet msl by November 22. This drawdown will provide sufficient capacity to store a reasonable level of power releases from Oahe and Big Bend during the winter season. Gavins Point Dam releases will be in the range of 25,100 to 27,500 cfs to continue to provide support to meet minimum service flows during the remainder of the 2003 navigation season. The 2003 navigation season will end 6 days early to compensate for the extra water released above the specific technical criteria during the 2002 runoff year. Lewis and Clark Lake will rise one foot to elevation 1207.5 feet msl during September and will be maintained at that elevation through the winter. Operating Plan for the Winter of 2003-2004. Due to low System storage, the specific technical criteria presented in the current Master Manual for the September 1 storage check were not used to determine winter 2003-2004 and winter 2004-2005 Gavins Point releases in the simulations. At a System storage level of 58.0 MAF or above on September 1, the specific technical criteria calls for a full service release rate for the following winter, and minimum service releases if system storage is at or below 43.0 MAF. Average full and minimum service winter release rates from Fort Randall Dam are 15,000 and 5,000 cfs, respectively. The storage on September 1, 2003, given the most likely runoff scenario, would be 43.3 MAF, only 0.3 MAF above the minimum service storage check. The September 1 storage check specifies a Fort Randall Dam winter release rate of only 5,200 cfs. This corresponds to a Gavins Point Dam winter release of 6,600 cfs, which is much too low based on operational experience with winter ice. Therefore, winter Gavins Point releases in all simulations are set to a minimum of 12,500 cfs for the winter of 2003-2004 and the winter of 2004-2005. It may be necessary at times to increase Gavins Point releases to provide adequate downstream flows if ice jams or blockages form which temporarily restrict flows. These events are expected to occur infrequently and be of short duration based on past experiences. It is anticipated that this year's winter release will be adequate to serve all downstream water intakes except for very short periods during significant river ice formation or ice jamming. For the winter period from the close of the 2003 navigation season on November 25, 2003 until the opening of the 2004 navigation season on April 1, 2004, operations are expected to be as follows: Fort Peck Dam releases are expected to average 8,000 cfs in December and near 8,500 cfs in January and February. The December release is 2,000 cfs less than the 1967-2002 average and the January and February releases are 3,000 cfs and 3,300 cfs below average, respectively. The Basic simulation shows Fort Peck Lake will lower 2.0 feet to elevation 2209.0 feet msl by the end of the winter period. Carryover multiple purpose storage in the three large upper reservoirs will be near a balanced condition on March 1, 2004. The lake is expected to rise 1.2 feet to elevation 2210.2 feet msl by March 31, 22.1 feet below normal. Garrison Dam releases will be adjusted to serve winter power loads and balance System storage. Releases will be scheduled at 20,000 cfs at the time of normal freeze-in and likely will have to be reduced for a short period to 18,000 cfs during the freeze-in in the Bismarck area in an attempt to not exceed the target 13-foot stage at the Bismarck gage. Flood stage is 16 feet. Garrison Dam releases are expected to average 20,000 cfs at the beginning of the winter period and increase slightly to 21,000 to 21,500 cfs in January and February, 2,800 and 3,600 cfs less than normal. Lake Sakakawea is expected to lower from near elevation 1822.8 feet msl to elevation 1816.9 feet msl by March 1, 20.6 feet below the base of the annual flood control storage zone. The Median simulation indicates the lake will rise to elevation 1818.5 feet msl by March 31, which would be 16.9 feet below normal. Oahe Dam releases for the winter season will provide backup for the Fort Randall and Gavins Point Dam releases plus fill the recapture space available in Lake Francis Case consistent with anticipated winter power loads. Monthly average releases may vary substantially with fluctuations in power loads occasioned by weather conditions but, in general, are expected to average about 15,000 cfs. Daily releases will vary widely to best meet power loads. Peak hourly releases, as well as daily energy generation, will be constrained to prevent urban flooding in the Pierre and Fort Pierre areas if severe ice problems develop downstream of Oahe Dam. This potential reduction has been coordinated with the Western Area Power Administration. The Lake Oahe level is expected to gradually rise from elevation 1580.9 feet msl at the end of the 2003 navigation season to elevation 1586.2 by March 1, then rise to elevation 1589.0 feet msl by the end of March, 17.3 feet below normal. Lake Sharpe at <u>Big Bend Dam</u> will be maintained in the normal 1420.0 to 1421.0 feet msl range during the winter. Fort Randall Dam releases will average near 11,000 cfs. Lake Francis Case is expected to rise from 1337.5 feet msl at the end of the 2003 navigation season to near elevation 1350.0 feet msl, the seasonal base of flood control, by March 1. However, if the plains snowpack flood potential downstream of Oahe Dam is quite low at that time, measures will be taken to raise Lake Francis Case to near elevation 1353.0 feet msl by March 1. It is likely that a Lake Francis Case level above elevation 1353.0 feet msl, to as high as 1355.2, will be reached by the end of the winter period on March 31, if runoff conditions permit. The level of Lake Francis Case above the White River delta near Chamberlain, South Dakota will likely remain at a higher elevation than the lake below the delta from mid-October through December, due to the damming effect of this delta area. Gavins Point Dam releases will be gradually reduced about mid-November for the 6-day shortened navigation season to a winter release level of 12,500 cfs at Sioux City. These releases should be adequate to maintain water levels necessary during freeze-in for downstream water intakes, however, adjustments to the releases may be required if significant reduction in flows occurs downstream due to ice blockages. Lewis and Clark Lake will generally be near elevation 1207.5 feet msl until late February when it will be lowered to elevation 1206.0 feet msl for controlling spring floods, primarily from the Niobrara River and Ponca Creek along the Fort Randall Dam to Gavins Point Dam reach. System storage for all five runoff conditions will be substantially below the base of the annual flood control zone by March 1, 2004, the beginning of next year's runoff season. Operations During the 2004 Navigation Season. The Upper Decile, Upper Quartile, Median, Lower Quartile, and Lower Decile runoff scenarios studied for this year's AOP follow the specific technical criteria presented in the current Master Manual for navigation service flow support. The normal 8-month navigation season length is shortened for Median, Lower Quartile, and Lower Decile as shown in Table III to compensate for the extra water released during the following periods: the non-navigation portion of March 2003, the 2003 navigation season, and anticipated winter 2003-2004 release requirements above the specific technical criteria. Releases from Fort Peck, Garrison, and Fort Randall Dams will follow repetitive daily patterns from early May, at the beginning of the T&E species nesting season, to the end of the nesting in late August. As previously stated, steady Gavins Point releases for all five runoff scenarios are shown during the tern and plover nesting season (mid-May to the end of August) to keep birds from nesting at low elevations. The Flow-to-Target simulation for Median runoff follows the March 15 and July 1 System storage checks. All runoff scenarios except Lower Decile would provide steady to rising pool levels in the spring fish spawn period. Releases from Fort Peck and Garrison during April and May for the Lower Quartile simulation were adjusted to provide steady to rising pool levels. Lower Decile simulations have equal declines in Fort Peck Lake, Lake Sakakawea, and Lake Oahe during April and May. All five runoff scenarios studied for this year's AOP provide gradually increasing Gavins Point releases to meet navigation season flow rates at the mouth of the Missouri near St. Louis by April 1, 2004, the normal navigation season opening date. The corresponding dates at upstream locations are Sioux City, March 23; Omaha, March 25; Nebraska City, March 26; and Kansas City, March 28. The studies illustrated on *Plates 3 through 8* and summarized in *Table III* are based on providing less than full service flows for all runoff conditions, a full 8-month season for Upper Decile and Upper Quartile runoff, and a shortened season for Median, Lower Quartile, and Lower Decile runoff. Upper Decile releases are 6,000 cfs less than full service (minimum service) in the spring and 3,500 cfs less than full service in the summer and fall. Releases for Upper Quartile runoff are 6,000 cfs below full service in the spring and 4,900 cfs less than full service during the summer and fall. Minimum service flows with a 39- to 40-day shortened navigation season will be provided should Median, Lower Quartile, or Lower Decile runoff occur. Navigation flow support for the 2004 season will be determined by actual System storage on March 15 and July 1. If the July 1 System storage check indicates an increase in service level, the increase will be delayed until the end of the T&E bird species nesting season. Gavins Point Dam releases may be quite variable during the 2004 navigation season but are expected to range from 21,000 to 30,000 cfs. Release
reductions necessary to minimize downstream flooding are not reflected in these monthly averages but will be instituted as conditions warrant. Simulated storages and releases for the System and individual reservoirs within the System are shown on *Plates 3 through 8* for the Steady-Release (SR) simulations. Flow-to-Target (FTT) and the Steady-Release - Flow-to-Target (SR-FTT) plots are not shown because the difference cannot be seen at the scale provided on *Plate 4*. Ample storage space exists in the System to control flood inflows under all conditions studied. *Table III* summarizes the navigation service support projected for the 2004 navigation season for the SR simulation for all 5 runoff levels. Also presented are the navigation support levels projected for the FTT and SR-FTT simulations for the median runoff condition. Two modified reservoir operations shown in previous AOPs, the Fort Peck "mini-test" and unbalancing the upper three reservoirs will not be implemented in 2004 due to low System storage. When System storage recovers sufficiently, the Corps anticipates that both these operations will be implemented. The first of these two modified operations is a test of flow modifications for the endangered pallid sturgeon. When Fort Peck Lake has adequate water above the spillway crest by mid to late May of any year, a T&E flow modification "mini-test" will be conducted in early June to monitor effects of higher spring releases and warmer water released from the spillway. The purposes of the mini-test are to allow for an evaluation of the integrity of the spillway structure, to test data collection methodology, and to gather information on river temperatures with various combinations of flow from the spillway and powerhouse. Streambank erosion and fishing impacts will also be monitored. During the Fort Peck "mini-test," which will last about 4 weeks, flows will vary from 8,000 to 15,000 cfs as various combinations of spillway and powerplant releases are monitored. The maximum spillway release of 11,000 cfs will combine with a minimum powerplant release of 4,000 cfs for 6 days. This operation will be timed to avoid lowering the lake during the forage fish spawn. The "mini-test" will not be conducted if sufficient flows will not pass over the spillway crest (elevation 2225 feet msl). A minimum lake elevation of about 2229 feet msl is needed during the test to avoid unstable flows over the spillway. Results of the AOP simulations show that this elevation will not be achieved in 2004 for any of the five runoff scenarios. A more extensive test with a combined 20,000 to 30,000 cfs release from Fort Peck is scheduled to be conducted beginning in early June in the year following the "mini-test" to allow further tests of the integrity of the spillway and to determine if warm water releases will benefit the native river fishery. Peak outflows during the full test would be maintained for 2 weeks within the 4-week test period. ## TABLE III NAVIGATION SERVICE SUPPORT FOR THE 2004 SEASON #### STEADY-RELEASE SIMULATIONS | | Runoff | 2004 Syster | n Storage | Flow Le | vel Above or | Length | | | |------|----------|-------------|-----------|---------|--------------|-------------|--|--| | | Scenario | March 15 | of Season | | | | | | | | (MAF) | (MAF) | (MAF) | (i | (in cfs) | | | | | | | | | Spring | Summer/Fall | | | | | U.D. | 34.5 | 44.5 | 54.0 | -6,000 | -3,500 | 8 | | | | U.Q. | 30.6 | 44.3 | 52.2 | -6,000 | -4,900 | 8 | | | | Med | 24.6 | 42.1 | 47.6 | -6,000 | -6,000 | 8 - 40 days | | | | L.Q. | 19.5 | 40.6 | 43.4 | -6,000 | -6,000 | 8 - 39 days | | | | L.D. | 15.5 | 40.4 | 41.1 | -6,000 | -6,000 | 8 - 39 days | | | #### FLOW-TO-TARGET AND STEADY-RELEASE - FLOW-TO-TARGET SIMULATIONS | | Runoff | 2004 System | n Storage | Flow Lev | vel Above or | Length | | | |-------|----------|-------------|-----------|---------------|--------------|--------------------|--|--| | | Scenario | March 15 | July 1 | Below l | Full Service | of Season (Months) | | | | | (MAF) | (MAF) | (MAF) | (i | n cfs) | | | | | | | | | <u>Spring</u> | Summer/Fall | | | | | FTT | 24.6 | 42.1 | 48.0 | -6,000 | -6,000 | 8 - 40 days | | | | SR-FT | T 24.6 | 42.1 | 47.7 | -6,000 | -6,000 | 8 - 40 days | | | The second modified operation involves unbalancing the three large upper reservoirs as shown on *Table IV* to benefit reservoir fishery and the 3 T&E species. AOP studies indicate the large reservoirs will be balanced on March 1, 2004. Should Upper Decile or Upper Quartile runoff occur in 2004, studies indicate Fort Peck Lake will be about 4.0 feet above a balanced condition, Lake Sakakawea will be 3.0 feet below a balanced condition, and Lake Oahe will be balanced on March 1, 2005. Reservoir unbalancing is computed based on the percentage of the carryover multiple purpose pool that remains in Fort Peck Lake, Lake Sakakawea, and Lake Oahe. This would permit the Fort Peck Dam "mini-test" in the spring of 2005, as described in the previous paragraph. Median or lower runoff does not sufficiently refill the reservoirs in 2004 and no unbalancing or "mini-test" would occur in spring 2005. The unbalancing would alternate at each project; high one year, float (normal operation) the next year, and low the third year as shown on *Table IV*. *Table V* shows the lake elevations proposed by the MRNRC at which the unbalancing would be terminated. *Table V* indicates that no reservoir unbalancing should occur for any of the five runoff scenarios in 2004. ### Summary of Reservoir Regulation Activities for T&E Species and Fish Propagation Enhancement As discussed in the section above, the 2003-2004 AOP includes no provisions for unbalancing the Fort Peck, Garrison, and Oahe reservoirs for any of the runoff scenarios. The criteria for unbalancing are based on recommendations provided by the MRNRC and the USFWS. Under all simulations, System storage will be below the minimum levels under which unbalancing is recommended by either the MRNRC or the USFWS. TABLE IV RESERVOIR UNBALANCING SCHEDULE | | Fort 1 | Peck | Garı | rison | Oahe | | | | |------|---------------------------|--------------|---------------------------|--------------|---------------------------|--------------|--|--| | Year | March 1 | Rest of Year | March 1 | Rest of Year | March 1 | Rest of year | | | | 1 | High | Float | Low | Hold Peak | Raise & hold during spawn | Float | | | | 2 | Raise & hold during spawn | Float | High | Float | Low | Hold peak | | | | 3 | Low | Hold peak | Raise & hold during spawn | Float | High | Float | | | | | | | | | | | | | #### **Notes:** **Float year:** Normal operation, then unbalance 1 foot during low pool years or 3 feet when System storage is near 57.1 MAF on March 1. Low year: Begin low, then hold peak the remainder of the year. **High year:** Begin high, raise and hold pool during spawn, then float. ## TABLE V MRNRC RECOMMENDED RESERVOIR ELEVATION GUIDELINES FOR UNBALANCING | | Fort Peck | Garrison | Oahe | |---|---|--|---| | Implement unbalancing if March 1 reservoir elevation is above this level. | 2234 | 1837.5 | 1607.5 | | | feet msl | feet msl | feet msl | | Implement unbalancing if March 1 reservoir elevation is in this range and the pool is expected to raise more than 3 feet after March 1. | 2227-2234 | 1827-1837.5 | 1600-1607.5 | | | feet msl | feet msl | feet msl | | Scheduling Criteria | Avoid lake level decline
during spawn period
which ranges from
April 15 – May 30 | Schedule after spawn
period of April 20 –
May 20 | Schedule after spawn
period of April 8 –
May 15 | Also, as previously stated, the Corps has re-initiated ESA consultation with the USFWS on a proposed action designed to ensure the continued existence of the T&E species on the Missouri River. The description of action for this consultation includes proposes release changes and tests from System dams, but does not include provisions for a spring rise and low summer flow from Gavins Point Dam as prescribed by the November 2000 BiOp. It is anticipated that the ESA consultation, as well as the publication of a Final EIS that presents a preferred alternative, publication of a Record of Decision on the EIS, and the publication an updated Master Manual will be complete before March 1, 2004. In addition to water management, other activities are also being undertaken by the Corps to assist in the survival of the endangered species on the Missouri River. Habitat creation for terns, plovers and pallid sturgeon, pallid sturgeon hatchery propagation, and a variety of studies are examples of some of these activities. <u>Fort Peck Dam</u> releases during the T&E bird-nesting season will range from 8,000 cfs for Upper Decile runoff to 10,000 cfs for Median and below runoff. This regulation should result in habitat conditions for nesting terms and plovers similar to what was available in 2003. If flood flows enter the Missouri River below the project during the nesting season, hourly releases will be lowered to no less than 3,000 cfs in order to keep traditional riverine fish rearing areas continuously inundated while helping to lower river stages at downstream nesting sites. April releases should be adequate for trout spawning below the project. A rising pool in the April-to-May sport fish-spawning season will be dependent upon the ever-changing daily inflow pattern to the reservoir but appears possible with all but Lower Decile runoff simulations. The T&E flow modification "mini-test" will not be run under any runoff scenario. Fort Peck Lake must be at elevation 2229 msl to allow releases through the spillway. Garrison Dam releases will be reduced during the
tern and plover-nesting season under all runoff scenarios. The reductions will be in the 500 to 1,000 cfs range. Hourly peaking will be limited to no more than 30,000 cfs for 6 hours if the daily average release is lower than 28,000 cfs. This will limit peak stages below the project for nesting birds. Lake Sakakawea elevations will not reach levels considered necessary for optimum fish spawning during the month of May for any of the runoff scenarios. Given Lower Quartile or higher runoff the lake should rise during the fish spawn season, however, the actual timing of the rise in lake elevation will be dependent upon the pattern of inflow at that time. Oahe Dam releases in the spring and summer will back up those from Gavins Point Dam. Oahe Reservoir elevation in the spring will be steady or rising given Lower Quartile or higher runoff. The actual timing of the rise in lake elevation will be dependent upon the pattern of inflow at that time. Under all AOP simulations, the Oahe pool will fall during the summer. Fort Randall Dam will be operated to provide for a pool elevation near 1355 feet msl during the fish spawn period, provided water can be supplied from other reservoirs for downstream uses, and the lake will not be drawn down below elevation 1337.5 feet msl in the fall to ensure adequate supply for water intakes. Hourly releases from Fort Randall Dam during the 2004 nesting season will be limited to 37,000 cfs. Daily average flows may be increased every third day to preserve the capability of increasing releases later in the summer if conditions turn dry. Gavins Point Dam. Based on 2003 nesting season results and planned habitat development activities, it is anticipated that sufficient habitat will be available above the release rates to provide for successful nesting. The resulting steady release prevents inundation of nests and chicks. Cycling releases every third day is not planned during the 2004 nesting season except during downstream flood control operations. If the results of ESA consultation allows for the replacement of the steady-release plan with the flow-to-target regulation, releases will be set to meet the specified navigation service level with increases made as necessary during the T&E bird species nesting season. The Gavins Point pool will be operated near 1206.0 feet msl in the spring and early summer with variations day to day due to rainfall runoff. Greater fluctuations occur in the river, increasing the risk of nest inundation in the upper end of the Gavins Point pool. Several factors contribute to the increased risk of nest inundation in the upper end of the Gavins Point pool. First, because there are greater numbers of T&E species nesting below the Gavins Point Dam project that must be preserved, Gavins Point Dam releases are restricted during the nesting season. Second, unexpected rainfall runoff between Fort Randall Dam and Gavins Point Dam can result in sudden pool rises because the Gavins Point project has a smaller storage capacity than the other System reservoirs. Third, the operation of Gavins Point for downstream flood control may necessitate sudden release reductions to prevent downstream bird losses. And finally, high releases required in wet years make nest inundation more likely. When combined, all these factors make it difficult and sometimes impossible to prevent inundation of nests in the upper end of Lewis and Clark Lake. The pool will be increased to elevation 1207.5 feet msl following the nesting season. #### VI. SUMMARY OF RESULTS EXPECTED IN 2003-2004 With System operations in accordance with the 2003-2004 AOP outlined in the preceding pages, the following results can be expected. **A.** <u>Flood Control.</u> All runoff scenarios studied will begin next year's runoff season on March 1, 2004, substantially below the desired 57.1 MAF base of annual flood control and multiple use zone. Therefore, the entire System flood control zone plus an additional 14.1 to 17.3 MAF of the carryover multiple use zone will be available to store runoff. The System will be available to significantly reduce peak discharges and store a significant volume of water for all floods that may originate above the System. Remaining storage in the carryover multiple use zone will be adequate to provide support for all of the other multiple purposes of the System, though at reduced levels. - **B.** Water Supply and Water Quality Control. Although below normal winter releases are being provided for all five runoff scenarios, all water supply and water quality requirements on the Missouri River both below Gavins Point Dam and between System reservoirs should be met for all flow conditions studied. It is possible with the low winter releases that ice formation or ice jams may temporarily reduce river stages to levels below which some intakes can draw water. Therefore, during severe cold spells, experience has shown that for brief periods it may be necessary to increase Gavins Point releases to help alleviate water supply problems. - **C.** <u>Irrigation</u>. Scheduled releases from the System reservoirs will be ample to meet the volumes of flow required for irrigation diversions from the Missouri River. Some access problems may be experienced, however, if drought conditions persist. Tributary irrigation water usage is fully accounted for in the estimates of water supply. - **D.** <u>Navigation</u>. Service to navigation in 2004 would be scheduled below full service flow support for all five runoff scenarios. Reductions below full service for the Steady-Release, Flow-to-Target, and Steady-Release-Flow-to-Target simulations are shown in *Table III*. Although these simulations provide a comparison of typical flow support under varying runoff conditions that cover 80 percent of the historic runoff conditions, the actual rate of flow support for the 2004 navigation season will be based on actual System storage on March 15 and July 1, 2004. Upper Decile and Upper Quartile simulations show an 8-month navigation season. The Median, Lower Quartile and Lower Decile simulations estimate the season shortening at 39 to 40 days. The anticipated service level and season length for all runoff conditions simulated are shown in *Table III*. **E.** <u>Power.</u> *Tables VI through IX* give the estimated monthly System load requirements and hydropower supply of the Eastern Division, Pick-Sloan Missouri Basin Program (P-S MBP), from August 2003 through December 2004. Estimates of monthly peak demands and energy include customer requirements for firm, short-term firm, summer firm, peaking, and various other types of power sales, System losses, and the effects of diversity. Also included in the estimated requirements are deliveries of power to the Western Division, P-S MBP, to help meet its firm power commitments. **F.** Recreation, Fish and Wildlife. The basic operations of the System will continue to provide recreation and fish and wildlife opportunities in the project areas and along the Missouri River as well as other benefits of a managed system. As a result of the drought, lake levels will remain well below normal and recreation access will be limited at some locations. Special operational adjustments incorporating specific objectives for these purposes will be accomplished whenever possible. Conditions should be favorable for the many visitors who enjoy the camping, boating, fishing, hunting, swimming, picnicking, and other recreational activities associated with the System reservoirs and for increasing usage of the regulated reaches of the Missouri River downstream of the reservoirs. Boat ramps that were lowered and low water ramps that were constructed during the drought of the late 1980's to early 1990's and the further improvements made in 2003 should provide adequate lake access next year even under the Lower Decile runoff scenario. However, boat ramps in a few areas where the ramps could not be extended may become unusable. This will affect the normal use patterns, as visitors will have to seek out areas with usable boat ramps. Boat ramp elevations for Fort Peck, Garrison, Oahe and Fort Randall Reservoirs were added in 2001 to the Missouri River Basin Water Management Division web site at: www.nwd-mr.usace.army.mil/rcc. The effects of the simulated System operation during 20032-2004 on fish and wildlife are included in the section entitled, "Summary of Reservoir Regulation Activities for T&E Species and Fish Propagation Enhancement." **TABLE VI** PEAKING CAPABILITY AND SALES (Steady-Release Regulation) (1,000 kW at plant) | | Estimated | | | | | | | | | | | | | | | | | |------|-----------|----------------------------|-------------|--------------|-------------|-------------|-------------|----------------------------|--------------|-------------|-------------|-------------|-------------------|--------------|-------------|-------------|--| | | Committed | | | | | | | Expected Total | | | | | | | | | | | | Sales* | Expected C of E Capability | | | | | Exp | Expected Bureau Capability | | | | | System Capability | | | | | | 2003 | | | <u>120%</u> | <u>Basic</u> | <u>80%</u> | | | <u>120%</u> | <u>Basic</u> | <u>80%</u> | | | <u>120%</u> | <u>Basic</u> | <u>80%</u> | Aug | 1075 | | 2056 | 2053 | 2050 | | | 199 | 196 | 192 | | | 2255 | 2249 | 2242 | | | | Sep | 868 | | 2049 | 2039 | 2032 | | | 201 | 195 | 191 | | | 2250 | 2234 | 2223 | | | | Oct | 791 | | 2027 | 2021 | 2011 | | | 202 | 195 | 191 | | | 2229 | 2216 | 2202 | | | | Nov | 1028 | | 2008 | 1990 | 1977 | | | 202 | 195 | 189 | | | 2210 | 2185 | 2166 | | | | Dec | 1097 | | 1987 | 1966 | 1951 | | | 199 | 192 | 185 | | | 2186 | 2158 | 2136 | | | | 2004 | | | | | | | | | | | | | | | | | | | 2004 | | | 0044 | 4000 | 4000 | | | 405 | 400 | 404 | | | 2200 | 0475 | 24.40 | | | | Jan | 1137 | | 2011 | 1986 | 1968 | | | 195 | 189 | 181 | | | 2206 | 2175 | 2149 | | | | Feb | 1048 | | 2025 | 1999 | 1980 | | | 192 | 188 | 178
| | | 2217 | 2187 | 2158 | | | | | | <u>U.D.</u> | <u>U.Q.</u> | Med. | <u>L.Q.</u> | <u>L.D.</u> | <u>U.D.</u> | <u>U.Q.</u> | Med. | <u>L.Q.</u> | <u>L.D.</u> | <u>U.D.</u> | <u>U.Q.</u> | Med | <u>L.Q.</u> | <u>L.D.</u> | | | Mar | 976 | 2099 | 2091 | 2056 | 2025 | 2021 | 190 | 190 | 191 | 178 | 178 | 2289 | 2281 | 2247 | 2203 | 2199 | | | Apr | 966 | 2124 | 2112 | 2065 | 2025 | 2019 | 191 | 191 | 193 | 178 | 179 | 2315 | 2303 | 2258 | 2203 | 2198 | | | May | 823 | 2146 | 2129 | 2076 | 2030 | 2015 | 199 | 199 | 199 | 187 | 189 | 2345 | 2328 | 2275 | 2217 | 2204 | | | Jun | 920 | 2187 | 2165 | 2109 | 2055 | 2022 | 213 | 213 | 208 | 196 | 199 | 2400 | 2378 | 2317 | 2251 | 2221 | | | Jul | 1087 | 2200 | 2174 | 2111 | 2048 | 2007 | 213 | 213 | 211 | 197 | 198 | 2413 | 2387 | 2322 | 2245 | 2205 | | | Aug | 1075 | 2192 | 2167 | 2103 | 2033 | 1987 | 209 | 209 | 208 | 196 | 195 | 2401 | 2376 | 2311 | 2229 | 2182 | | | Sep | 868 | 2190 | 2164 | 2074 | 1998 | 1950 | 208 | 207 | 207 | 197 | 196 | 2398 | 2371 | 2281 | 2195 | 2146 | | | Oct | 791 | 2181 | 2154 | 2061 | 1979 | 1929 | 207 | 206 | 207 | 199 | 196 | 2388 | 2360 | 2268 | 2178 | 2125 | | | Nov | 1028 | 2151 | 2121 | 2065 | 1980 | 1930 | 206 | 206 | 204 | 198 | 196 | 2357 | 2327 | 2269 | 2178 | 2126 | | | Dec | 1097 | 2138 | 2109 | 2041 | 1962 | 1901 | 200 | 200 | 199 | 193 | 194 | 2338 | 2309 | 2240 | 2155 | 2095 | | ^{*} Estimated sales, including system reserves. Power in addition to hydro production needed for these load requirements wil be obtained from other power systems by interchange or purchase. ** Total output of Canyon Ferry and 1/2 of the output of Yellowtail powerplant. **TABLE VII** ENERGY GENERATION AND SALES (Steady-Release Regulation) (Million kWh at plant) | | stimated | | | | | | | | | | | | _ | | | | |--------|----------|----------------------------|-------------|-------|-------------|-------------------------------|-------------|-------------|--------------|-------------|-------------------|----------------|-------------|--------------|-------------|-------------| | C | ommitted | | | | | | | | | | | Expected Total | | | | | | _ | Sales* | Expected C of E Generation | | | Expe | Expected Bureau Generation ** | | | | | System Generation | | | | | | | 2003 | | | <u>120%</u> | Basic | <u>80%</u> | | | <u>120%</u> | <u>Basic</u> | <u>80%</u> | | | <u>120%</u> | <u>Basic</u> | <u>80%</u> | Aug | 775 | | 778 | 788 | 797 | | | 62 | 51 | 51 | | | 840 | 839 | 848 | | | Sep | 667 | | 657 | 714 | 722 | | | 59 | 48 | 48 | | | 716 | 762 | 770 | | | Oct | 675 | | 503 | 533 | 540 | | | 57 | 48 | 47 | | | 560 | 581 | 587 | | | Nov | 723 | | 429 | 401 | 406 | | | 57 | 47 | 44 | | | 487 | 448 | 450 | | | Dec | 850 | | 521 | 513 | 517 | | | 62 | 48 | 45 | | | 582 | 561 | 562 | 2004 | | | | | | | | | | | | | | | | | | Jan | 837 | | 546 | 522 | 526 | | | 61 | 48 | 45 | | | 607 | 570 | 571 | | | Feb | 794 | | 489 | 493 | 497 | | | 56 | 44 | 41 | | | 545 | 537 | 538 | | | | | <u>U.D.</u> | <u>U.Q.</u> | Med. | <u>L.Q.</u> | <u>L.D.</u> | <u>U.D.</u> | <u>U.Q.</u> | Med. | <u>L.Q.</u> | <u>L.D.</u> | <u>U.D.</u> | <u>U.Q.</u> | Med | <u>L.Q.</u> | <u>L.D.</u> | | Mar | 734 | 408 | 443 | 432 | 481 | 476 | 59 | 59 | 47 | 43 | 43 | 467 | 502 | 478 | 524 | 519 | | Apr | 689 | 486 | 514 | 530 | 647 | 650 | 83 | 83 | 54 | 40 | 30 | 570 | 597 | 584 | 687 | 680 | | May | 640 | 667 | 672 | 679 | 808 | 788 | 122 | 122 | 67 | 44 | 35 | 789 | 794 | 746 | 852 | 823 | | Jun | 696 | 775 | 757 | 735 | 740 | 726 | 143 | 143 | 77 | 46 | 37 | 919 | 900 | 812 | 786 | 763 | | Jul | 775 | 857 | 831 | 818 | 814 | 791 | 151 | 126 | 77 | 50 | 41 | 1008 | 957 | 895 | 865 | 832 | | Aug | 780 | 870 | 837 | 777 | 771 | 746 | 99 | 93 | 78 | 50 | 41 | 969 | 930 | 855 | 822 | 787 | | Sep | 666 | 749 | 721 | 509 | 527 | 531 | 95 | 89 | 74 | 49 | 40 | 844 | 809 | 583 | 576 | 571 | | Oct | 673 | 604 | 571 | 450 | 459 | 463 | 93 | 89 | 74 | 48 | 50 | 698 | 660 | 524 | 507 | 513 | | Nov | 723 | 552 | 525 | 353 | 339 | 329 | 89 | 85 | 79 | 55 | 47 | 641 | 610 | 432 | 395 | 376 | | Dec | 826 | 576 | 580 | 547 | 548 | 501 | 91 | 92 | 81 | 57 | 49 | 667 | 672 | 628 | 604 | <u>551</u> | | CY TOT | 8833 | 7580 | 7486 | 6846 | 7158 | 7024 | 1144 | 1099 | 799 | 568 | 499 | 8724 | 8584 | 7645 | 7725 | 7523 | ^{*} Estimated sales including system reserves and losses. Power in addition to hydro production needed for these load requirements will be obtained from other systems by interchange or purchase. ** Total output Canyon Ferry and 1/2 output of Yellowtail powerplant. TABLE VIII PEAKING CAPABILITY AND SALES (Flow-to-Target & SR-FTT) (1,000 kW at plant) | | Estimated | | | | F 1 - | 4.7-4-1 | |------|---------------------|--------------|----------------|----------------------------|-----------|------------| | | Committed
Sales* | Evacated C a | f E Canability | Expected Bureau Capability | Expecte | | | 0000 | Sales | Expected C o | | Expected Bureau Capability | System C | | | 2003 | _ | <u>Ba</u> | <u>isic</u> | <u>Basic</u> | <u>Ba</u> | <u>sic</u> | | Aug | 1075 | 2 | 053 | 196 | 22 | 249 | | Sep | 868 | 2 | 039 | 195 | 22 | 234 | | Oct | 791 | 2 | 021 | 195 | 22 | 216 | | Nov | 1028 | 1 | 990 | 195 | 21 | 85 | | Dec | 1097 | 1: | 966 | 192 | 21 | 58 | | 2004 | | | | | | | | Jan | 1137 | 11 | 986 | 189 | 21 | 75 | | Feb | 1048 | | 999 | 188 | | 87 | | 1 65 | 1040 | Med. | Med. | 100 | Med. | Med. | | | | FTT | SR-FTT | Med. | FTT | SR-FTT | | | | FII | 3K-F11 | <u>iviea.</u> | FII | SK-FII | | Mar | 976 | 2056 | 2056 | 191 | 2247 | 2247 | | Apr | 966 | 2065 | 2065 | 193 | 2258 | 2258 | | May | 823 | 2078 | 2077 | 199 | 2277 | 2276 | | Jun | 920 | 2116 | 2111 | 208 | 2324 | 2319 | | Jul | 1087 | 2119 | 2112 | 211 | 2330 | 2323 | | Aug | 1075 | 2111 | 2103 | 208 | 2319 | 2311 | | Sep | 868 | 2082 | 2074 | 207 | 2289 | 2281 | | Oct | 791 | 2069 | 2061 | 207 | 2276 | 2268 | | Nov | 1028 | 2073 | 2065 | 204 | 2277 | 2269 | | Dec | 1097 | 2049 | 2042 | 199 | 2248 | 2241 | | | | | | | | | ^{*} Estimated sales, including system reserves. Power in addition to hydro production needed for these load requirements wil be obtained from other power systems by interchange or purchase. ** Total output of Canyon Ferry and 1/2 of the output of Yellowtail powerplant. TABLE IX ENERGY GENERATION AND SALES (Flow-to-Target & SR-FTT) (Million kWh at plant) | Co | stimated
ommitted | | | | Expecte | | |--------|----------------------|---------------|-------------|-------------------------------|------------|------------| | _ | Sales* | Expected C of | | Expected Bureau Generation ** | System G | | | 2003 | | <u>Ba</u> | <u>isic</u> | <u>Basic</u> | <u>Ba</u> | <u>sic</u> | | Λιια | 775 | | 788 | 51 | | 839 | | Aug | | | | | | | | Sep | 667 | | 714 | 48 | | 762
504 | | Oct | 675 | | 533 | 48 | | 581 | | Nov | 723 | | 401 | 47 | | 448 | | Dec | 850 | ; | 513 | 48 | | 561 | | 2004 | | | | | | | | Jan | 837 | | 522 | 48 | į | 570 | | Feb | 794 | | 493 | 44 | | 537 | | 1 00 | 754 | | 100 | 77 | Med. | Med. | | | | Med. | Med. | Med. | FTT | SR-FTT | | | | FTT | SR-FTT | <u>mod.</u> | | OKTIT | | Mar | 734 | 432 | 432 | 47 | 479 | 479 | | Apr | 689 | 530 | 530 | 54 | 584 | 584 | | May | 640 | 608 | 667 | 67 | 675 | 734 | | Jun | 696 | 615 | 711 | 77 | 692 | 788 | | Jul | 775 | 771 | 837 | 77 | 848 | 914 | | Aug | 780 | 757 | 789 | 78 | 835 | 867 | | Sep | 666 | 516 | 513 | 74 | 590 | 587 | | Oct | 673 | 457 | 454 | 74 | 531 | 528 | | Nov | 723 | 352 | 355 | 79 | 431 | 434 | | Dec | 826 | <u>544</u> | <u>547</u> | <u>81</u> | <u>625</u> | 628 | | CY TOT | 8833 | 6597 | 6850 | 799 | 7396 | 7649 | ^{*} Estimated sales including system reserves and losses. Power in addition to hydro production needed for these load requirements will be obtained from other systems by interchange or purchase. ** Total output Canyon Ferry and 1/2 output of Yellowtail powerplant. - **G.** System Storage. If presently anticipated runoff estimates based upon normal precipitation materialize, System storage will total about 40.9 MAF at the close of CY 2003, tying the previous record low end-of-year storage set in 1990. This year-end storage would be 1.8 MAF less than the 42.7 MAF experienced on December 31, 2002, and 14.1 .MAF less than the 1967 to 2002 average. The previous lowest storage prior to the 1988-1992 drought was 50.9 MAF in 1981. The end-of-year storages have ranged from a maximum of 60.9 MAF, which occurred in 1975, to the 1990 minimum of 40.9 MAF. Total System storage on December 31, 2004 is presented in *Table X* for the five runoff scenarios simulated. - **H.** Summary of Water Use by Functions. Anticipated water use in CY 2003, under the Basic simulation, is shown in *Tables XI and XII*. Actual water use data for CY 2002 are included for information and comparison. Under the simulated operations, estimated water use in CY 2004, which will be subject to reappraisal next year, also is shown in *Table XI* for the Steady-Release simulations and in *Table XII* for the Flow-to-Target and Steady-Release - Flow-to-Target simulations. Note that Gavins Point releases are lower for the Flow-to-Target simulation since no additional releases are made for T&E bird species. #### **VII. TENTATIVE PROJECTION OF OPERATIONS THROUGH MARCH 2010** (Not Completed Until Final Plan is Adopted) ## TABLE X ANTICIPATED DECEMBER 31, 2004 STORAGE IN SYSTEM #### STEADY-RELEASE SIMULATIONS | | | Above | Unfilled | Total | |----------------|------------|-------------|------------------|---------| | Water Supply | Total | Minimum | Carryover | Change | | Condition | (12/31/04) | Pools 1/ | Storage 2/ | CY 2004 | | | | (Volumes in | 1,000 Acre-Feet) | | | Upper Decile | 54,300 | 36,200 | 2,800 | 12,000 | | Upper Quartile | 51,800 | 33,700 | 5,300 | 9,500 | | Median | 46,300 | 28,200 | 10,800 | 5,400 | | Lower Quartile | 39,900 | 21,800 | 17,200 | 0 | | Lower Decile | 36,400 | 18,300 |
20,700 | -3,500 | ## FLOW-TO-TARGET AND STEADY-RELEASE – FLOW TO TARGET SIMULATIONS | Water Supply Condition | Total
(12/31/04) | Above Minimum Pools 1/ (Volumes in | Unfilled Carryover Storage 2/ 1,000 Acre-Feet) | Total
Change
CY 2004 | |------------------------|---------------------|------------------------------------|--|----------------------------| | Median FTT | 46,800 | 28,700 | 10,300 | 5,900 | | Median SR-FTT | 46,300 | 28,200 | 10,800 | 5,400 | ^{1/} Net usable storage above 18.1 MAF System minimum pool level established for power, recreation, irrigation diversions, and other purposes. ^{2/} System base of flood control zone containing 57.1 MAF. TABLE XI MISSOURI RIVER MAINSTEM SYSTEM WATER USE FOR CALENDAR YEARS 2002, 2003, AND 2004 ABOVE SIOUX CITY, IOWA in Million Acre-Feet (MAF) Steady-Release | | | | | Simulations for | | | | | |---------------------------------|--------|--------------|--------------|-----------------|--------------------|------------|----------|-------------| | | | CY 2002 | CY 2003 | | Calendar Year 2004 | | | | | | | Actual | Basic | Upper | Upper | | Lower | Lower | | | | | Simulation | Decile | Quartile | Median | Quartile | Decile | | | | | | | | | | | | Upstream Depletions | (1) | | | | | | | | | Irrigation, Tributary Reservoir | | | | | | | | | | Evaporation & Other Uses | | 2.0 | 2.0 | | | | | | | Tributary Reservoir Storage Ch | ange | <u>- 0.4</u> | <u>- 0.4</u> | | | | | | | Total Upstream Depletions | | 1.6 | 1.6 | 2.3 | 2.3 | 2.8 | 2.5 | 2.3 | | System Reservoir Evaporation | (2) | 2.1 | 2.4 | 1.1 | 1.1 | 1.6 | 1.5 | 1.4 | | Sioux City Flows | | | | | | | | | | Navigation Season | | | | | | | | | | Unregulated Flood Inflows B | etween | | | | | | | | | Gavins Point & Sioux City | | 0.0 | 0.0 | | | | | | | Navigation Service Requirem | | 15.0 | 13.3 | 15.4 | 14.3 | 9.9 | 11.3 | 11.1 | | Supplementary Releases | | | | | - 1.0 | | | | | T&E Species | (4) | -0.4 | 0.5 | 0.5 | 0.5 | 0.6 | 0.2 | 0.2 | | Flood Evacuation | (5) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Non-navigation Season | () | | | | | | | | | Flows | | 3.5 | 3.5 | 3.3 | 3.2 | 4.3 | 4.0 | 4.0 | | Flood Evacuation Releases | (6) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | System Storage Change | | -6.1 | 1 0 | 11.9 | 9.2 | 5.1 | 0.0 | 2.5 | | System Storage Change | | <u>-0.1</u> | <u>-1.8</u> | 11.9 | <u>9.2</u> | <u>5.4</u> | 0.0 | <u>-3.5</u> | | Total | | 15.7 | 19.5 | 34.5 | 30.6 | 24.6 | 19.5 | 15.5 | | Project Releases | | | | | | | | | | Fort Peck | | 4.8 | 5.3 | 4.8 | 4.9 | 5.3 | 5.3 | 5.4 | | Garrison | | 11.7 | 13.2 | 14.2 | 14.0 | 12.8 | 13.2 | 12.6 | | Oahe | | 14.9 | 14.2 | 13.1 | 13.1 | 12.1 | 13.6 | 13.7 | | Big Bend | | 13.9 | 13.5 | 13.0 | 13.1 | 12.0 | 13.5 | 13.5 | | Fort Randall | | 15.2 | 15.0 | 14.2 | 14.0 | 12.8 | 13.6 | 13.7 | | Gavins Point | | 16.0 | 15.7 | 16.3 | 15.8 | 14.1 | 14.7 | 14.7 | | | | | | | | | | | - (1) Tributary uses, above the 1949 level of development including agricultural depletions and tributary storage effects. - (2) Net evaporation is shown for 2003. - (3) Incremental inflows to reach which exceed those usable in support of navigation at the target level, even if Gavins Point Dam releases were held to as low as 6.000 cfs. - (4) Increased releases required to maintain navigation release flexibility during the T&E species nesting season. During 2002, releases fell below minimum service support flows because of T&E nesting resulting in a negative value instead of zero. In 2003 releases fell below minimum service support flows because of a Federal Court Injunction from mid-August through 1 Sept. This Court Order reduced T&E Species associated requirements by 200,000 acre-feet during the total nesting period from 1 May through 15 August. - (5) Includes flood control releases for flood control storage evacuation and releases used to extend the navigation season beyond the normal December 1 closing date at the mouth of the Missouri River. - (6) Releases for flood control storage evacuation in excess of a 15,000 cfs Fort Randall Dam release. ## TABLE XII MISSOURI RIVER MAINSTEM SYSTEM WATER USE FOR CALENDAR YEARS 2002, 2003, AND 2004 ABOVE SIOUX CITY, IOWA in Million Acre-Feet (MAF) | | | CY 2002 | CY 2002 CY 2003 | | Simulations for
Calendar Year 2004 | | | |---|-------|-------------|---------------------|--------------------------|---------------------------------------|--|--| | | | Actual | Basic
Simulation | Flow-to-Target
Median | SR-FTT
Median | | | | Upstream Depletions Irrigation, Tributary Reservoir | (1) | | | | | | | | Evaporation & Other Uses | | 2.0 | 2.0 | | | | | | Tributary Reservoir Storage Char | nge | <u>- 04</u> | <u>- 0.4</u> | | | | | | Total Upstream Depletions | | 1.6 | 1.6 | 2.7 | 2.7 | | | | System Reservoir Evaporation | (2) | 2.1 | 2.4 | 1.5 | 1.5 | | | | Sioux City Flows
Navigation Season
Unregulated Flood Inflows Be | tween | | | | | | | | Gavins Point & Sioux City | | 0.0 | 0.0 | | | | | | Navigation Service Requireme | nt | 15.0 | 13.3 | 10.5 | 11.1 | | | | Supplementary Releases | | | | | | | | | T&E Species | (4) | -0.4 | 0.5 | 0.0 | 0.0 | | | | Flood Evacuation | (5) | 0.0 | 0.0 | 0.0 | 0.0 | | | | Non-navigation Season | | | | | | | | | Flows | (6) | 3.5 | 3.5 | 4.1 | 4.1 | | | | Flood Evacuation Releases | (6) | 0.0 | 0.0 | 0.0 | 0.0 | | | | System Storage Change | | <u>-6.1</u> | <u>-1.8</u> | <u>5.8</u> | <u>5.2</u> | | | | Total | | 15.7 | 19.5 | 24.6 | 24.6 | | | | Project Releases | | | | | | | | | Fort Peck | | 4.8 | 5.3 | 5.1 | 5.3 | | | | Garrison | | 11.7 | 13.2 | 12.6 | 12.9 | | | | Oahe | | 14.9 | 14.2 | 11.5 | 12.1 | | | | Big Bend | | 13.9 | 13.5 | 11.4 | 12.0 | | | | Fort Randall | | 15.2 | 15.0 | 12.2 | 12.7 | | | | Gavins Point | | 16.0 | 15.7 | 13.5 | 14.1 | | | - (1) Tributary uses, above the 1949 level of development including agricultural depletions and tributary storage effects. - (2) Net evaporation is shown for 2004. - (3) Incremental inflows to reach which exceed those usable in support of navigation at the target level, even if Gavins Point Dam releases were held to as low as 6.000 cfs. - (4) Increased releases required to maintain navigation release flexibility during the T&E species nesting season. During 2002, releases fell below minimum service support flows because of T&E nesting resulting in a negative value instead of zero. In 2003 releases fell below minimum service support flows because of a Federal Court Injunction from mid-August through 1 Sept. This Court Order reduced T&E Species associated requirements by 200,000 acre-feet during the total nesting period from 1 May through 15 August. - (5) Includes flood control releases for flood control storage evacuation and releases used to extend the navigation season beyond the normal December 1 closing date at the mouth of the Missouri River. - (6) Releases for flood control storage evacuation in excess of a 15,000 cfs Fort Randall Dam release | | Summary of Engineering Data Missouri River Mainstem System | | | | | | | | |-------------|---|---|--|---|--|--|--|--| | Item
No. | Subject | Fort Peck Lake | Garrison Dam -
Lake Sakakawea | Oahe Dam -
Lake Oahe | | | | | | 1 | Location of Dam | Near Glasgow, Montana | Near Garrison, ND | Near Pierre, SD | | | | | | 2 | River Mile - 1960 Mileage | Mile 1771.5 | Mile 1389.9 | Mile 1072.3 | | | | | | 3 | Total & incremental drainage | 57,500 | 181,400 (2) 123,900 | 243,490 (1) 62,090 | | | | | | 4 | areas in square miles Approximate length of full | 134, ending near Zortman, MT | 178, ending near Trenton, ND | 231, ending near Bismarck, ND | | | | | | | reservoir (in valley miles) | , , | | | | | | | | 5
6 | Shoreline in miles (3) Average total & incremental | 1520 (elevation 2234)
10,200 | 1340 (elevation 1837.5)
25,600 15,400 | 2250 (elevation 1607.5)
28,900 3,300 | | | | | | 7 | inflow in cfs Max. discharge of record | 137,000 (June 1953) | 348,000 (April 1952) | 440,000 (April 1952) | | | | | | 8 | near damsite in cfs Construction started - calendar yr. | 1933 | 1946 | 1948 | | | | | | 9 | In operation (4) calendar yr. | 1940 | 1955 | 1962 | | | | | | 4.0 | Dam and Embankment | | | 4.440 | | | | | | 10 | Top of dam, elevation in feet msl | 2280.5 | 1875 | 1660 | | | | | | 11 | Length of dam in feet | 21,026 (excluding spillway) | 11,300 (including spillway) | 9,300 (excluding spillway) | | | | | | 12 | Damming height in feet (5) | 220 | 180 | 200 | | | | | | 13 | Maximum height in feet (5) | 250.5 | 210 | 245 | | | | | | 14 | Max. base width, total & w/o | 3500, 2700 | 3400, 2050 | 3500, 1500 | | | | | | 15 | berms in feet
Abutment formations (under dam & | Bearpaw shale and glacial fill | Fort Union clay shale | Pierre shale | | | | | | 16 | embankment)
Type of fill | Hydraulic & rolled earth fill | Rolled earth filled | Rolled earth fill & shale berms | | | | | | 17 | Fill quantity, cubic yards | 125,628,000 | 66,500,000 | 55,000,000 & 37,000,000 | | | | | | 18 | Volume of concrete, cubic yards | 1,200,000 | 1,500,000 | 1,045,000 | | | | | | 19 | Date of closure | 24 June 1937 | 15 April 1953 | 3 August 1958 | | | | | | | Spillway Data | | | | | | | | | 20 | Location | Right bank - remote | Left bank - adjacent | Right bank - remote | | | | | | 21 | Crest elevation in feet msl | 2225 | 1825 | 1596.5 | | | | | | 22 | Width (including piers) in feet | 820 gated | 1336 gated | 456 gated | | | | | | 23 | No., size and type of gates | 16 - 40' x 25' vertical lift gates | 28 - 40' x 29' Tainter | 8 - 50' x 23.5' Tainter | | | | | | 24 | Design discharge capacity, cfs | 275,000 at elev 2253.3 |
827,000 at elev 1858.5 | 304,000 at elev 1644.4 | | | | | | 25 | Discharge capacity at maximum | 230,000 | 660,000 | 80,000 | | | | | | | operating pool in cfs | | | | | | | | | | Reservoir Data (6) | | | | | | | | | 26 | Max. operating pool elev. & area | 2250 msl 246,000 acres | | · · · · · · · · · · · · · · · · · · · | | | | | | 27 | Max. normal op. pool elev. & area | 2246 msl 240,000 acres | | | | | | | | 28 | Base flood control elev & area | 2234 msl 212,000 acres | 1837.5 msl 307,000 acres | | | | | | | 29 | Min. operating pool elev. & area
Storage allocation & capacity | 2160 msl 90,000 acres | 1775 msl 128,000 acres | 1540 msl 117,000 acres | | | | | | 30 | Exclusive flood control | 2250-2246 975,000 a.f. | 1854-1850 1,489,000 a.f. | 1620-1617 1,102,000 a.f. | | | | | | 31 | Flood control & multiple use | 2246-2234 2,717,000 a.f. | | | | | | | | 32 | Carryover multiple use | 2234-2160 10,785,000 a.f. | | | | | | | | 33 | Permanent | 2160-2030 4,211,000 a.f. | | | | | | | | 34 | Gross | 2250-2030 18,688,000 a.f. | | | | | | | | 35 | Reservoir filling initiated | November 1937 | December 1953 | August 1958 | | | | | | 36 | Initially reached min. operating pool | 27 May 1942 | 7 August 1955 | 3 April 1962 | | | | | | 37 | Estimated annual sediment inflow | | 25,900 a.f. 920 yrs. | | | | | | | <u> </u> | Outlet Works Data | 1000 yis. | 720 yis. | 1170 3151 | | | | | | 38 | Location | Right bank | Right Bank | Right Bank | | | | | | 39 | Number and size of conduits | 2 - 24' 8" diameter (nos. 3 & 4) | 1 - 26' dia. and 2 - 22' dia. | 6 - 19.75' dia. upstream, 18.25' | | | | | | 40 | Length of conduits in feet (8) | No. 2 6615 No. 4 7.240 | 1520 | dia. downstream | | | | | | 40 | č , | No. 3 - 6,615, No. 4 - 7,240
1 - 28' dia. cylindrical gate | 1529 | 3496 to 3659
1 - 13' x 22' per conduit, vertical | | | | | | 41 | No., size, and type of service gates | | 1 - 18' x 24.5' Tainter gate per | lift, 4 cable suspension and | | | | | | | | 6 ports, 7.6' x 8.5' high (net opening) in each control shaft | conduit for fine regulation | 2 hydraulic suspension (fine | | | | | | | | | | regulation) | | | | | | 42 | Entrance invert elevation (msl) | 2095 | 1672 | 1425 | | | | | | 43 | Avg. discharge capacity per conduit | Elev. 2250 | Elev. 1854 | Elev. 1620 | | | | | | | & total | 22,500 cfs - 45,000 cfs | 30,400 cfs - 98,000 cfs | 18,500 cfs - 111,000 cfs | | | | | | 44 | Present tailwater elevation (ft msl) | 2032-2036 5,000 - 35,000 cfs | 1670-1680 15,000- 60,000 cfs | 1423-1428 20,000-55,000 cfs | | | | | | 15 | Power Facilities and Data | 104 | 161 | 174 | | | | | | 45 | Avg. gross head available in feet (14) | 194 | 161
5 20' dia 25' panatagka | 174 | | | | | | 46 | Number and size of conduits | No. 1-24'8" dia., No. 2-22'4" dia. | 5 - 29' dia., 25' penstocks | 7 - 24' dia., imbedded penstocks | | | | | | 47 | Length of conduits in feet (8) | No. 1 - 5,653, No. 2 - 6,355 | 1829 | From 3,280 to 4,005 | | | | | | 48 | Surge tanks | PH#1: 3-40' dia., PH#2: 2-65' dia. | 65' dia 2 per penstock | 70' dia., 2 per penstock | | | | | | 49 | No., type and speed of turbines | 5 Francis, PH#1-2: 128.5 rpm,
1-164 rpm, PH#2-2: 128.6 rpm | 5 Francis, 90 rpm | 7 Francis, 100 rpm | | | | | | 50 | Discharge cap. at rated head in cfs | PH#1, units 1&3 170', 2-140' | 150' 41,000 cfs | 185' 54,000 cfs | | | | | | 51 | Generator nameplate rating in kW | 8,800 cfs, PH#2-4&5 170'-7,200 cfs
1&3: 43,500; 2: 18,250; 4&5: 40,000 | 3 - 109,250, 2 - 95,000 | 112,290 | | | | | | | | | | | | | | | | 52
52 | Plant capacity in kW | 185,250 | 517,750 | 786,030
534,000 | | | | | | 53 | Dependable capacity in kW (9) | 181,000 | 388,000 | 534,000 | | | | | | 54
55 | Avg. annual energy, million kWh (12)
Initial generation, first and last unit | 1,142
July 1943 - June 1961 | 2,429
January 1956 - October 1960 | 2,867
April 1962 - June 1963 | | | | | | 56 | Estimated cost September 1999 | | | | | | | | | <u> </u> | completed project (13) | \$158,428,000 | \$305,274,000 | \$346,521,000 | | | | | | Summary of Engineering Data Missouri River Mainstem System | | | | | | | | | |---|---|---|--|---|--|---|--|---| | Big Bend Dam
Lake Sharpe | | Fort Randall
Lake Francis | | Gavins Point Dar
Lewis & Clark La | | Total | Item
No. | Remarks | | 21 miles upstream Chamb
Mile 987.4
249,330 (1) | | Near Lake Andes, SD
Mile 880.0
263,480 (1) | 14,150 | Near Yankton, SD
Mile 811.1
279,480 (1) | 16,000 | | 1
2
3 | (1) Includes 4,280 square miles of non-contributing areas. | | 80, ending near Pierre, SD |) | 107, ending at Big Beno | d Dam | 25, ending near Niobrara, N | IE | 755 miles | 4 | (2) Includes 1,350 square miles of non-contributing | | 200 (elevation 1420)
28,900 | | 540 (elevation 1350)
30,000 | 1,100 | 90 (elevation 1204.5)
32,000 | 2,000 | 5,940 miles | 5
6 | areas. (3) With pool at base of flood control. | | 440,000 (April 1952) | | 447,000 (April 1952) | | 480,000 (April 1952) | | | 7 | (4) Storage first available for regulation of flows.(5) Damming height is height | | 1959
1964 | | 1946
1953 | | 1952
1955 | | | 8
9 | from low water to maximum operating pool. Maximum | | 1440
10,570 (including spillway
78
95
1200, 700 |) | 1395
10,700 (including spillw
140
165
4300, 1250 | vay) | 1234
8,700 (including spillway)
45
74
850, 450 | | 71,596
863 feet | 10
11
12
13
14 | height is from average
streambed to top of dam. (6) Based on latest available
storage data. (7) River regulation is attained
by flows over low-crested
spillway and through | | Pierre shale & Niobrara ch | nalk | Niobrara chalk | | Niobrara chalk & Carlile sha | ale | | 15 | turbines. (8) Length from upstream face | | Rolled earth, shale, chalk f
17,000,000
540,000
24 July 1963 | ăll | Rolled earth fill & chalk
28,000,000 & 22,000,0
961,000
20 July 1952 | | Rolled earth & chalk fill
7,000,000
308,000
31 July 1955 | | 358,128,000 cu. yds
5,554,000 cu. yds. | 16
17
18
19 | of outlet or to spiral case. (9) Based on 8th year (1961) of drought drawdown (From study 8-83-1985). | | Left bank - adjacent
1385
376 gated
8 - 40' x 38' Tainter
390,000 at elev 1433.6
270,000 | | Left bank - adjacent
1346
1000 gated
21 - 40' x 29' Tainter
620,000 at elev 1379.3
508,000 | | Right bank - adjacent
1180
664 gated
14 - 40' x 30' Tainter
584,000 at elev 1221.4
345,000 | | | | (10) Affected by level of Lake Francis case. Applicable to pool at elevation 1350. (11) Spillway crest. (12) 1967-2001 Average (13) Source: Annual Report on Civil Works Activities of the Corps of Engineers. Extract | | 1422 msl 66
1420 msl 5 | 61,000 acres
60,000 acres
67,000 acres
61,000 acres | 1365 msl
1350 msl | 102,000 acres
95,000 acres
77,000 acres
38,000 acres | 1208 msl 28
1204.5 msl 24 | ,000 acres
,000 acres
,000 acres
,000 acres | | 26
27
28
29 | Report Fiscal Year 1999.
(14) Based on Study 8-83-1985 | | 1420-1345 1,6 | 60,000 a.f.
117,000 a.f.
582,000 a.f.
359,000 a.f.
430 yrs. | 1350-1320
1320-1240 | 985,000 a.f.
1,309,000 a.f.
1,607,000 a.f.
1,517,000 a.f.
5,418,000 a.f.
250 yrs. | 1208-1204.5 9 1204.5-1160 32 1210-1160 47 August 1955 22 December 1955 | 59,000 a.f.
20,000 a.f.
21,000 a.f.
70,000 a.f.
180 yrs. | 38,983,000 a.f.
18,084,000 a.f. | 30
31
32
33
34
35
36
37 | | | None (7) | | Left Bank
4 - 22' diameter | | None (7) | | | 38
39 | | | | | 1013
2 - 11' x 23' per conduit
lift, cable suspension | | , | | | 40
41 | | | 1385 (11) | | 1229
Elev 1375 | 420.000.4 | 1180 (11) | | | 42
43 | | | 1351-1355(10) 25,000- | 100,000 cfs | | - 128,000 cfs
00-60,000 cfs | | 60,000 cfs | | 44 | | | 70
None: direct intake
None
8 Fixed blade, 81.8 rpm | | 117
8 - 28' dia., 22' penstocl
1,074
59' dia, 2 per alternate p
8 Francis, 85.7 rpm | | 48
None: direct intake
None
3 Kaplan, 75 rpm | | 764 feet
55,083
36 units | 45
46
47
48
49 | | | 67' | 103,000 cfs | 112' | 44,500 cfs | 48' | 36,000 cfs | | 50 | | | 3 - 67,276, 5 - 58,500
494,320
497,000
1,041
October 1964 - July 1966 | | 40,000
320,000
293,000
1,843
March 1954 - January | 1956 | 44,100
132,300
74,000
754
September 1956 - January | 1957 | 2,435,650 kw
1,967,000 kw
10,077 million kWh
July 1943 - July 1966 | 55 | Corps of Engineers, U.S. Army
Compiled by
Northwestern Division | | \$107,498,000 | | \$199,066,0 | 00 | \$49,617,000 | | \$1,166,404,000 | | Missouri River Region
May 2001 | ## Reservoir Release and Unregulated Flow STUDY NO 1 2004 | Dill Or . | O1OD1 | 00/04/ | 03 | | | | PREL. | IMINARY | 2003-20 | JU4 AOP | BASIC FO | ŀ |
---|-------------|---------------|-----------------------------------|----------------|----------------|----------------|-----------------|-----------------|------------------------------|----------------------|---------------|----| | TIME OF | STUDY | 10:12: | :32 | | | | | | | | | | | | 3150 | IL03 | | 200 |)3 | | | ES IN 10 | 000 AF E | EXCEPT A | AS INDICA | 47 | | | | INI-SUN | 4 31AUG | 30SEF | 310C | 1500 | V 22NO | 7 3 0 NO | V 31DE0 | 31JA | 1 29FEB | | | FORT 1 | PECK- | - | | | | | | | | | | | | FORT I NAT INFI DEPLETII EVAPORA: MOD INFI RELEASE STOR CHE STORAGE ELEV FIT DISCH KC POWER AVE POWE PEAK POV ENERGY OF | LOM
NC | 2180
-432 | 200 | 260
-103 | 350 | 189 | 5 86 | 99 | 320 | 319 | 365 | | | EVAPORA: | TION | 332 | 67 | 85 | 74 | 34 | 1 16 | 18 | 3 39 | 9 -80 | -52 | | | MOD INFI | LOW | 2280 | 174 | 278 | 339 | 164 | 1 77 | 7 88 | 348 | 395 | 417 | | | STOR CHA | ANGE | -552 | -257 | -76 | 95 | 46 | 5 -7 | 7 -23 | 3 -144 | -115 | 489 | | | STORAGE
ELEV FTM | MST. | 2212 3 |) 10693
1 2210 8 | 10618 | 10713 | 10759 | 10752 | 10729 | 10585 | 10470 | 10398 | | | DISCH KO | CFS | 8.1 | 7.0 | 5.9 | 4.0 | 4.0 | 6.0 | 7.0 | 8.0 | 2209.4 | 8.5 | | | POWER
AVE POWE | ZR MW | | 97 | 74 | 40 | . 40 | . 75 | | , | | | | | PEAK POW | MW I | | 140 | 139 | 140 | 140 | 140 | 140 | 139 | 138 | 138 | | | ENERGY | 3WH | 424.7 | 64.9 | 53.2 | 36.7 | 17.8 | 12.6 | 16.7 | 73.8 | 76.2 | 72.8 | | | GARRINAT INFI DEPLETIC CHAN STC EVAPORAT REG INFI RELEASE STOR CHA STORAGE ELEV FTM DISCH KC POWER AVE POWE PEAK POW ENERGY G | SON- | - | 400 | 300 | | | | | | | | | | DEPLETIC | DN
DM | 2630
-42 | 480 | - 87 | 500
61 | 200 | 93 | 107 | 250 | 260 | 360 | | | CHAN STO | OR
PTON | -5 | 11 | 11 | 21 | | -21 | -11 | -11 | . ~ 3 | -2 | | | REG INFL | TOM | 5105 | 793 | 731 | 616 | 324 | 158 | 21 211 | . 45
. 689 | 758 | 825 | | | RELEASE | MCF | 7456 | 1291 | 1012 | 626 | 303 | 180 | 286 | 1230 | 1291 | 1237 | | | STORAGE | MOD | 14857 | 14358 | 14078 | 14068 | 14089 | 14067 | 13992 | -541
13451 | -533
12918 | -412
12506 | | | DISCH KO | ISL
ES | 1826.1 | 1824.2 | 1823.2 | 1823.1 | 1823.2 | 1823.1 | 1822.8 | 1820.7 | 1818.6 | 1816.9 | | | POWER | | 21.1 | 21.0 | 17.0 | 10.2 | 10.2 | 13.0 | 18.0 | 20.0 | 21.0 | 21.5 | | | PEAK POWE | ERMW
IMW | | 242 | 194
336 | 116 | 116 | 148 | 204 | 225 | 233 | 235 | | | ENERGY G | WH | 1016.4 | 179.8 | 139.8 | 86.7 | 41.9 | 24.9 | 39.3 | 167.4 | 173.1 | 163.5 | | | OAH | ΙΕ | | | | | | | | | | | | | OAH NAT INFI DEPLETIO CHAN STO EVAPORAT REG INFL RELEASE STOR CHA STORAGE ELEV FTM DISCH KC POWER AVE DOWE | WO | 375 | 50 | 100 | 65 | 30 | 14 | 16 | | 10 | 90 | | | CHAN STO |)R | -1 | 87
2 | 22
20 | -6
35 | 3 | 1
-14 | -26 | 14 | 19 | 30 | | | EVAPORAT | ION | 340 | 71 | 88 | 75 | 33 | 16 | 18 | 39 | -5 | ~ 2 | | | RELEASE | JOW | 7318 | 1615 | 1022 | 657
975 | 297
262 | 163
172 | 257 | 1166 | 1277 | 1294 | | | STOR CHA | NGE | -49 | -430 | -506 | -318 | 35 | - 8 | 129 | 260 | 374 | 415 | | | ELEV FTM | ISL | 1586.4 | 1584.5 | 1582.3 | 1580.8 | 11918 | 11910
1580.9 | 12039
1581.5 | 12299 | 12673 | 13088 | | | DISCH KC | FS | 25.4 | 26.3 | 25.7 | 15.9 | 8.8 | 12.4 | 8.0 | 14.7 | 14.7 | 15.3 | | | POWER
AVE POWE
PEAK POW
ENERGY G | R MW | | 300 | 289 | 177 | 99 | 138 | 90 | 166 | 166 | 175 | | | PEAK POW
ENERGY G | MW
WH | 1008 2 | 593
223 1 | 581 | 573 | 574 | 574 | 577 | 583 | 592 | 601 | | | | | 1000.2 | 223.1 | 200.4 | 132.0 | 35.5 | 23.2 | 17.3 | 123.2 | 123.9 | 121.8 | | | BIG B
EVAPORAT | END | 97 | 20 | 25 | 22 | 1.0 | - | - | | | | | | REG INFL | OW | 7270 | 1596 | 1503 | 953 | 253 | 167 | 122 | 895 | 903 | 879 | | | RELEASE
STORAGE | | 7270
1682 | 1596 | 1503 | 953 | 253 | 167 | 122 | 895 | 903 | 879 | | | ELEV FTM | SL | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1682 | | | POWER | FS | 23.8 | 25.9 | 25.3 | 15.5 | 8.5 | 12.0 | 7.7 | 14.5 | 14.7 | 15.3 | | | AVE POWE | R MW | | 123 | 120 | 76 | 43 | 61 | 39 | 73 | 72 | 73 | | | ENERGY G | MH
WH | 426.3 | 91.2 | 86.1 | 538
56.7 | 538
15.5 | 538
10.2 | 538 | 538
54 3 | 538 | 529 | | | BIG B EVAPORAT REG INFL RELEASE STORAGE ELEV FTM DISCH KC POWER AVE POWE PEAK POW ENERGY GFORT RAI NAT INFL | ו ז א כווא | | | | | | 20.2 | , | 34.3 | 33.0 | 31.0 | | | FORT RAI
NAT INFLO
DEPLETION
EVAPORAT:
REG INFLO
RELEASE
STOR CHAN
STORAGE
ELEV FTMS
DISCH KCI | OW | 180 | 40 | 40 | 10 | 5 | 2 | 3 | 10 | 20 | 50 | | | DEPLETION | N
TON | 34
108 | 15 | 7 21 | 1 | 1 | ō | 1 | 3 | 3 | 3 | | | REG INFLO | WC | 7307 | 1596 | 1505 | 937 | 246 | 165 | 120 | 10
892 | 920 | 926 | | | STOR CHAI | NGE | -310 | 1583 | 1568 | 1555
-617 | 695 | 186 | 121 | 689 | 670 | 552 | | | STORAGE | 0. T | 3434 | 3447 | 3384 | 2767 | 2318 | 2297 | 2297 | 2500 | 2750 | 374
3124 | | | DISCH KC | FS
FS | 24.3 | 25.7 | 1353.2
26.3 | 1345.1
25.3 | 1337.9
23.4 | 1337.5
13.4 | 1337.5 | 1341.0 | 1344.8 | 1350.0 | | | POWER | | | | | | | | | | | 9.6 | | | AVE POWER
PEAK POW
ENERGY GW | MW | | 351 | 219
348 | 202
318 | 175
285 | 98
284 | 56
283 | 83 | 84
317 | 77
338 | | | ENERGY G | ИH | 735.3 | 159.6 | 157.6 | 150.7 | 63.0 | 16.4 | 10.7 | 61.8 | 62.2 | | | | -GAVINS I | POINT | | | | | | | | | | | | | DEPLETION | MC
WC | 765 | 100 | 100 | 120 | 60 | 28 | 32 | 100 | 100 | 125 | | | CHAN STOR | į | 27 | -3 | -1 | 2 | 5
4 | 18 | 3
11 | 10
-7 | 1 | 2 | | | -GAVINS E NAT INFL DEPLETION CHAN STOF EVAPORATI REG INFLO RELEASE STOR CHAN STORAGE ELEV FTMS | ON | 36
8346 | 7
1663 | 1662 | 1666 | 750 | 2 | 2 | 4 | | 2 | | | RELEASE | | 8356 | 1660 | 1636 | 1666 | 750 | 228 | 159 | 768
768 | 770
770 | 680
719 | | | STOR CHAN | IGE | -10
368 | 3
371 | 26
397 | 307 | 207 | 207 | 207 | 200 | | -39 | | | ELEV FTMS
DISCH KCF
POWER | SL. | 1206.4 | 1206.5 | 1207.5 | 1207.5 | 1207.5 | 1207.5 | 1207.5 | 1207.5 | 397
1207.5 | 358
1206.0 | | | POWER | S | 25.5 | 27.0 | 27.5 | 27.1 | 25.2 | 16.4 | 10.0 | 12.5 | 12.5 | 12.5 | | | AVE POWER | WM | | 93 | 95 | 95 | 88 | 58 | 36 | 44 | 44 | 44 | | | AVE POWER
PEAK POW
ENERGY GW | IH | 353.6 | 69.1 | 117
68.7 | 117
70.6 | 117
31 8 | 117 | 117 | 44
78 | 44
78 | 76 | | | -GAVINS P | | | | | | 51.0 | 7.0 | 0.0 | 33.0 | 33.1 | 30.7 | | | NAT INFLO | W | 545 | 135 | -
95 | 75 | 3.8 | 1.8 | 20 | 45 | 3.5 | 0.5 | | | DEPLETION
EGULATED | FI.OW | 110 | 3.3 | 22 | 75
9 | 5 | 18
2 | 3 | 11 | 35
12 | 85
13 | | | KAF | - TOM | 8791 | 1762 | | | | | | | | | | | KCFS | | | 1762
28.7 | 28.7 | 28.2 | 26.3 | 17.5 | 11.1 | 802
13.0 | 12.9 | | | | TOTAL |
 | | | | | | | | | | | | | NAT INFLO | W | 6675
-131 | 1005 | 975
-144 | 1120 | 518 | 242 | 276 | 725 | 740 | 1075 | | | DEPLETION
CHAN STOR | ON | 20 | 11 | 30 | 58 | 2 | -18 | -24
-25 | -32
-27 | -36
-8 | 16
-2 | | | EVAPORATI:
STORAGE | ON | 1307
44428 | 1005
152
11
271
43258 | 338
42360 | 291
41510 | 129 | 60
41105 | 41126 | 149 | 40000 | | | | ATTAMENT | WER | - | 1050 | 001 | | | **102 | 41136 | 40914 | 40890 | 41156 | | | AVE POWER
PEAK POW I | MW | | 1059
2053 | 991
2039 | 717
2021 | 571
1990 | 578
1988 | 512 | 690
1966
513.4
16.6 | 702
1986
522.2 | 709 | | | ENERGY GWI
DAILY GWH | н з | 964.5 | 787.6
25.4 | 713.9 | 533.4 | 205.6 | 97.1 | 98.3 | 513.4 | 522.2 | 1999
493.2 | | | 0,,,, | | (T. C | | | | | | | 16.6 | 16.8 | 17.0 | | | | TIV | ıı-SUM | 31AUG | 30SEP | 310CT | 15NOV | COMCS | 2 ONTOT? | 21000 | 24 2225 | | | INI-SUM 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 29FEB 2004 TIME OF STUDY 07:20:30 VALUES IN 1000 AF EXCEPT AS INDICATED STUDY NO 2 | TIME OF STUDY 07:20:30 VALUES IN 1000 AF EXCEPT AS IND 31JUL03 2003 | | | | | | | | | | | | |--|--|--|--|---|---|---|---|--|--|---|--| | | INI-SUM | 31AUG | 200
30SEP | | 15NOV | | | | | | | | FORT PECK- NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS | 2616
-644
228
3032
3048
-16 | -85
51
274
430
-156
10794
2211.4 | -146
64
394
357
37 | -79
56
443
258
185
11016
2212.7 | -19
13
228
125
103
11119
2213.3 | -9
6
106
83
23
11142
2213.4 | -10
7
121
111
10
11152
2213.5 | -91
30
445
553
-108
11044
2212.9 | -119
497
584
-87
10957
2212.3 | -86
524
546
-22
10934
2212.2 | | | POWER AVE POWER MW PEAK POW MW ENERGY GWH | 1 | 87
141
65.0 | 75 | 52
142 | 53
143 | 76
143 | 88
143 | 113
142 | 119
142 | 119
142 | | | GARRISON-
NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION
REG INFLOW
RELEASE | 3156
62
-15
270
5857
7557 | 61
821
1291 | 1012 | 19
66
737
649 | -47
16
396
314 | -22
-19
7
191
201 | -25
-11
8
245 | -24
-21
35
822
1230 | -9
-5
900 | 432
13
965
1237 | | | STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 1826.1
21.4 | 14386
1824.3
21.0 | 17.0 | 14244
1823.8
10.5 | 14326
1824.1 | 14315
1824.1 |
14250 | 12051 | 12400 | -271
13157
1819.5
21.5 | | | AVE POWER MW PEAK POW MW ENERGY GWHOAHE | 1037.7 | | 194
336
140.0 | 337
90.0 | 338 | 338 | 338 | 227
333
168.9 | 241
328
179.4 | 239
325
166.2 | | | OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE | 450
171
-1
237 | 60
87
2
54 | 120
22
20
67 | 78
-6
32
58
707 | 3
14 | 1
-20 | -23
7 | -5
31 | -7 | 108 | | | STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 13137
1586.4
25.4 | 1574
-361
12776
1584.8
25.6 | 1277
-215
12561
1583.9
21.5 | 707
849
-142
12418
1583.2
13.8 | 397 | 161 | 114 | 880 | 931 | 1315
796
519
13756
1589.0
13.8 | | | AVE POWER MW PEAK POW MW ENERGY GWHBIG BEND- | 964.6 | 292
594
217.6 | 244
589
175.6 | 157
586
116.5 | 151
584
54.3 | 585 | | 163
596
121.4 | 174
605
129.5 | | | | EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER | 66
6913
6913
1682 | 15
1559
1559
1682
1420.0
25.4 | 19
1259
1259
1682
1420.0
21.2 | 16
833
833
1682
1420.0
13.5 | 393
393
1682
1420.0
13.2 | 159
159
1682
1420.0
11.4 | 112 | 9
872
872
1682
1420.0
14.2 | 931
931
1682
1420.0
15.1 | 796
796
1682
1420.0
13.8 | | | AVE POWER MW
PEAK POW MW
ENERGY GWH | 406.7 | 120
515
89.1 | 100
523
72.4 | 67
538
50.2 | 67
538
24.0 | 58
538
9.7 | 36
538
6.9 | 71
538
52.9 | 74
538
55.3 | 66
529
4 6.2 | | | FORT RANDALI NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV ETMSI | 216
34
73
7023 | 48
15
18
1573
1560 | 48
7
23
1277
1490
-213 | 12
1
18
826
1460
-634 | 6
1
3
395
680
-285 | | 2
113 | 7 | 24
3
952
652
300 | 60
3
853
529
324 | | | STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER MW | 24.3 | 25.4 | 25.0 | 23.8 | 2315
1337.8
22.8 | 2297
1337.5
12.8 | 2297
1337.5
7.1 | 2500
1341.0
10.9 | 2800
1345.6
10.6 | 3124
1350.0
9.2 | | | PEAK POW MW
ENERGY GWH | 704.0 | | 207
342
148.8 | 187
306
139.0 | 169
285
61.0 | 93
284
15.7 | 52
283
10.0 | 81
300
60.1 | 82
320
60.7 | 74
338
51.3 | | | NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE | 918
28
28
24
8226
8236 | 120
10
-2
5
1663
1660 | 120
-5
1
7
1609
1583
26 | 144
2
2
6
1599
1599 | 72
5
2
1
747
747 | 34
2
19
1
227
227 | | 120
10
-7
3
770
770 | 120
1
1
771
771 | 150
3
682
721 | | | STORAGE
ELEV FTMSL
DISCH KCFS
POWER | | 371
1206.5
27.0 | 397 | 397
1207.5
26.0 | 397
1207.5
25.1 | 397
1207.5
16.3 | 397
1207.5
10.0 | 397
1207.5
12.5 | 397
1207.5
12.5 | -39
358
1206.0
12.5 | | | AVE POWER MW
PEAK POW MW
ENERGY GWH
GAVINS POINT | 348.8 | | | 91
117
67.8 | 88
117
31.7 | 58
117
9.7 | 36
117
6.8 | 44
78
33.1 | 45
78
33.2 | 44
76
30.8 | | | NAT INFLOW
DEPLETION
REGULATED FLOW | 654
110
AT SIO | 162
33 | 114
22 | 90
9
1680
27.3 | 45
5
787
26.4 | 21
2
246
17.7 | 24
3
180
11.3 | 54
11
813
13.2 | 42
12
801
13.0 | 102
13
810
14.1 | | | DEPLETION
CHAN STOR
EVAPORATION
STORAGE | 8010
-239
13
898
44428 | 196
11
204 | 1170
-133
31
255
42860 | 54
221 | 621
-53
2
52
42194 | 290
-25
-20
24
42218 | 331
-28
-22
28
42348 | 870
-77
-33
114
42334 | 888
-93
-12
42502 | 1290
-27
3 | | | SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH DAILY GWH | | | 913
2049
657.2
21.9 | 676
2027
502.7
16.2 | 649
2005
233.6
15.6 | 582
2005
97.8
14.0 | 510
2008
97.9
12.2 | 700
1987 | 734
2011 | 703
2025
489.1
16.9 | | | I | NI-SUM | 31AUG | | | | | | | | | | 2004 | TIME OF STU | DY 07:38: | 28 | | | | INBIII | . FITTINAICE | 2003-20 | U4 AOF | OU PERC | ENI SI | |--|--|---|---|--|---------------------------------------|--|---------------------------------------|---------------------------------------|--|--------------------------------------|--------| | | JUL03 | . 20 | 200 | 3 | | VALUE | ES IN 10 | 00 AF E | XCEPT A | s indic | ATED | | 31 | INI-SUM | 4 31AUG | 30SEP | 310CT | 15NOV | / 22NOV | 3 ONOV | 31DEC | 31JAN | 29FEB | | | FORT PEC
NAT INFLOW
DEPLETION
EVAPORATIO | K
1744
-572
N 413 | 1 160
2 -59
8 84 | 208
-129
105 | 280
- 93
92 | 148
-25
42 | 8 69
5 -12
2 19 | 79
2 -13
2 22 | 256
-89
48 | 252
-87 | 292
-65 | | | FORT PEC
NAT INFLOW
DEPLETION
EVAPORATIO
MOD INFLOW
RELEASE
STOR CHANG
STORAGE
ELEV FIMSL
DISCH KCFS
POWER | 1903
2855
E -952
10950
2212.3 | 135
430
2 -296
10654
3 2210.5 | 232
346
-114
10540
2209.8 | 281
244
36
10577
2210.1 | 131
118
13
10590
2210.1 | . 61
83 83
-22
10568 | . 70
111
-41
10527
2209.8 | 297
510
-213
10313
2208.5 | 339
523
-184
10130
2207.3 | 357
489
-132
9998
2206.5 | | | DISCH KCFS POWER AVE POWER PEAK POW M ENERGY GWH | 8.1
MW
W | . 7.0
87
140 | 5.8
72
139 | 4.0
49
139 | 49 | 6.0
74 | 7.0
87 | 8.3
102
137
76.0 | 8.5
104 | 8.5
103 | | | | | | | | | 12.5 | 16.6 | 76.0 | 77.3 | 72.0 | | | DEPLETION CHAN STOR EVAPORATIO | -124
-124
-5
N 493 | 384
38
11
102 | -92
13
126 | 400
53
19
109 | 160
-56
49 | -26
-21
23 | -30
-11
26 | 200
-23
-14
56 | 208
4
-2 | 288
7
0 | | | GARRISO NAT INFLOW DEPLETION CHAN STOR EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER | 7396
F -2810
14857
1826.1
21.4 | 1291
-606
14251
1823.8
21.0 | 1012
-384
13868
1822.3
17.0 | 616
-114
13753
1821.9
10.0 | 298
-14
13740
1821.8
10.0 | 139
167
-27
13713
1821.7
12.0 | 286
-96
13616
1821.4
18.0 | 1199
-536
13080
1819.2 | 725
1291
~567
12514
1816.9 | 1237
-467
12047
1814.9 | | | POWER AVE POWER PEAK POW M ENERGY GWH | MW | 241 | 193 | 114 | 114 | 136
331
22.8 | 202
330
38.9 | 217
324
161.6 | 230
317
171.2 | 232
311
161.5 | | | OAHE-
NAT INFLOW
DEPLETION
CHAN STOR | -
300
171
-2 | 40
87 | 80
22
20 | 52
- 6 | 24
3 | 11
1 | 13 | 14 | 8
19 | 72
30 | | | OAHE- NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGI STORAGE ELEV FTMSL DISCH KCFS POWER | N 423
7100
7617
E -516 | 90
1157
1657
-500 | 109
980
1572
-591 | 93
617
1014
-397 | 41
278
280
-2 | 19
147
181
-34 | 22
244
137
107 | 48
1129
938
191 | 1273
926
347 | 1276
912
364 | | | ELEV FTMSL
DISCH KCFS
POWER
AVE POWER | 1586.4
25.4 | 1584.2
26.9 | 1581.5
26.4 | 1579.7 | 1579.7 | 1579.5
13.1 | 1580.0
8.6 | 1580.9
15.3 | 1582.5
15.1 | 1584.1
15.9 | | | POWER AVE POWER I PEAK POW MI ENERGY GWHBIG BENI | 1035.8 | 228.5 | 213.7 | | | | | | | | | | BIG BENI
EVAPORATION
REG INFLOW
RELEASE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 121
7496
7496
1682
1420.0 | 24
1632
1632
1682
1420.0 | 31
1541
1541
1682
1420.0 | 27
987
987
1682
1420.0 | 12
268
268
1682
1420.0 | 6
176
176
1682
1420.0 | 7
131
131
1682
1420.0 | 14
924
924
1682
1420.0 | 926
926
1682
1420.0 | 912
912
1682
1420.0 | | | POWER AVE POWER N PEAK POW MV ENERGY GWH | 23.8
W
V
439.5 | 125
515
93 3 | 123
518 | 79
538 | 9.0
46
538 | 12.6
64
538 | 8.2
42
538 | 15.0
75
538
56.1 | 15.1
74
538 | 15.9
76
529 | | | | | | | | | | | | | | | | FORT RANDA
NAT INFLOW
DEPLETION
EVAPORATION
REG INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS | 7 135
7470
7780
3 -310 | 31
1618
1605
13 | 39
1527
1590
-63 | 31
964
1581
-617 | 11
258
708
-450 | 172
192
-20 | 1
5
127
127
0 | 12
916
713
203 | 939
689
250 | 949
575
374 | | | POWER | | | | | | | | 2500
1341.0
11.6 | 2750
1344.8
11.2 | 3124
1350.0
10.0 | | | AVE POWER M
PEAK POW MW
ENERGY GWH
GAVINS POI | 750.5 | 218
351
161.9 | 222
348
159.8 | 206
318
153.1 | | | 283 | 86
300
64.0 | | 80
338
55.5 | | | NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION
REG INFLOW | 612
28
26 | 10
-3 | 80
-5
-1
11 | 96
2
2
10 | | 18
2 | 11
2 | -7
5 | _ | 100
2 | | | RELEASE
STOR CHANGE | 8356
-10 | 9
1663
1660
3
371 | 1662
1636
26
397 | 1666
1666
397 | | 228 | 159 | 771 | 768
768 | 677
716
-39
358 | | | STORAGE ELEV FIMSL DISCH KCFS POWER AVE POWER M PEAK POW MW | W | 27.0
93
115 | 27.5
95
117 | 27.1
95
117 | 25.2
88
117 | 16.4
58
117 | 36 |
1207.5
12.5
45
78 | 44 | 44 | | | ENERGY GWHGAVINS POI
NAT INFLOW | 353.6
NT - SIOU | 69.1 | 68.7 | 70.6 | 31.8 | 9.8 | 117 | 33.2 | 78
33.0 | 76
30.6 | | | DEPLETION
REGULATED FL
KAF
KCFS | 110
OW AT SIC | 3.3 | 22 | | 30
5
775
26.0 | 240
17.3 | 16
3
172
10.8 | 36
11
796
13.0 | 28
12
784
12.8 | 68
13
771
13.4 | | | TOTAL
NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION | -353
18
1629 | 804
124
10
340 | -175
31
422 | 896
-34
57
362 | 2
161 | -14
74 | -36
-31
85 | -28
184 | -48
-9 | 860
-12
0 | | | STORAGE SYSTEM POWER AVE POWER MY PEAK POW MW ENERGY GWH DAILY GWH | R.
₩ | 1071
2050
797.1 | | 726
2011
540.4 | 580
1978
208.7 | 577
1975
97.0 | 521
1977
100.1 | 39883
695
1951
517.0 | 707
1968
526.1 | 39829
715
1980
497.4 | | | | INT-SUM | 25.7 | | 17.4 | | | 12.5 | 16.7 | 17.0 | 17.2 | | INI-SUM 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 29FEB 1 | TIME OF STUI | , | | | | CWCP, S' | | UJ-2004
BI BACE | AOP OP | PER DEC | ILE KON | OFF SIM | OLATION | 99001 | 9901 | 9901 P. | AGE
NO | 4 | |---|-----------------------------|------------------------|------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|---------------------------------|---------------------------------|--------------------------------| | | PEB04 | 30 | 200 | | CWCP, S. | | | 00 AF E | XCEPT A | S INDIC | ATED | | | 20 | STUDY | NO | 4 | | 291 | INI-SUM | 15MAR | | | 30APR | 31MAY | 3 0 JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 20
30NOV | | 31JAN | 28FEB | | FORT PECK
NAT INFLOW
DEPLETION
EVAPORATION | 9600
358 | -17 | | 192
-10 | 797
79 | 1604
325 | 2491
501 | | 456
-92
64 | 379
-106
81 | 531
-55
71 | 210
-22
17 | 98
-10 | 112
-12 | 346
-119
38 | 297
-153 | 400
-112 | | MOD INFLOW
RELEASE
STOR CHANGE | 8933
4556
4378 | 337
179
158 | 56
102 | 202
71
131 | | 1279
338
941 | 1990
446
1544 | 1029
461
568 | 484
461
23 | 404
327
77 | 515
265
249 | 215
128
86 | 100
60
40 | 115
127
-12 | 427
461
-34 | 450
492
-42 | 512
444
68 | | STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 10934
2212.2
9.5 | 2213.2 | 2213.8 | 11325
2214.5
4.0 | | 12746
2222.5
5.5 | 14290
2230.6
7.5 | 2233.3 | 14880
2233.4
7.5 | 14957
2233.8
5.5 | 15206
2235.0
4.3 | | 15333
2235.6
4.3 | | | 15245
2235.2
8.0 | 15312
2235.5
8.0 | | AVE POWER M
PEAK POW MW
ENERGY GWH | 741.5 | 75
143
27.1 | 143 | 51
144
10.9 | 51
147
36.8 | 71
153
53.1 | 100
206
71.9 | 102
208
75.6 | 102
208
75.9 | 75
209
54.0 | 59
209
43.9 | 59
209
21.3 | 59
209
9.9 | 110
209
21.0 | 103
209
76.4 | 109
209
81.4 | 109
209
73.6 | | GARRISON
NAT INFLOW
DEPLETION
CHAN STOR | 14199
710
17 | -55
37 | -26 | 309
-33 | 1376
-69 | 1934
150
-16 | 3530
830
-21 | 2647
527 | 841
58 | 574
-124
20 | 652
-8
12 | 260
-103
0 | 121
-48
0 | 139
-55
-37 | 278
-137
5 | 348
-120
-5 | 434
-79 | | EVAPORATION
REG INFLOW
RELEASE | 17728
14322 | 786
476 | | 413
268 | 1683
1131 | 2106
1291 | 3126
1428 | 22
2559
1414 | 70
1174
1353 | 88
957
1071 | 77
860
879 | 18
473
425 | 9
221
198 | 10
274
286 | 40
841
1230 | 955
1414 | 957
1250 | | STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS | 13157 | 13468
1820.8 | 13602 | 146
13748
1821.9
15.0 | 552
14300
1824.0
19.0 | 815
15115
1827.1
21.0 | 1697
16813
1833.1
24.0 | 1145
17958
1837.0
23.0 | -179
17779
1836.4
22.0 | -114
17665
1836.0
18.0 | -19
17646
1836.0
14.3 | 47
17693
1836.1
14.3 | 22
17715
1836.2
14.3 | -12
17704
1836.2
18.0 | -389
17315
1834.9
20.0 | -459
16856
1833.3
23.0 | -292
16563 | | POWER AVE POWER M PEAK POW MW ENERGY GWH | | 179
329
64.3 | 169
330
28.3 | 169
332
36.5 | 216
338
155.3 | 242
347
180.2 | 285
365
205.1 | 282
376
209.8 | 273
374
202.8 | 223
373
160.5 | 177
373
131.9 | 177
374
63.8 | 177
374
29.8 | 223
374
42.8 | 246
370
183.2 | 280
365
208.4 | 272
362
182.7 | | OAHE
NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION | 3850
585
-3
318 | 559
22
26 | 261
10
5 | 335
13
0 | 474
46
-18 | 347
64
-9 | 881
123
-13 | 297
143
4 | 123
93
4 | 163
23
17 | 102
-8
16 | 109
2
0 | 51
1
0 | 58
1
-16 | 22
11
-9 | 10
16
-13 | 59
25
2 | | REG INFLOW
RELEASE
STOR CHANGE | 17267
12872
4395 | 1039
287
752 | 463
166
297 | 589
210
379 | 1540
694
847 | 1565
1145
421 | 2173
1307
866 | 21
1551
1576
-25 | 67
1320
1662
-342 | 84
1144
1437
-293 | 73
932
952
-20 | 17
516
457 | 241
212 | 9
318
186 | 39
1194
1048 | 1396
914 | 1286
619 | | STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 13756
1589.0
13.8 | 14508
1592.0
9.6 | 14805 | 15184 | 16031 | 16451 | 17317 | 17292
1602.4
25.6 | 16950 | 16658 | 16638 | 58
16696
1600.3
15.4 | 28
16724
1600.4
15.3 | 132
16856
1600.8
11.7 | 146
17002
1601.3
17.0 | 481
17483
1603.0
14.9 | 667
18150
1605.3
11.1 | | AVE POWER M
PEAK POW MW
ENERGY GWH | 1939.1 | 114
631
41.0 | 143
637
24.0 | 142
644
30.6 | 142
660
102.4 | 230
668
170.8 | 274
684
197.2 | 322
683
239.5 | 338
677
251.5 | 301
671
216.4 | 193
671
143.4 | 191
672
68.9 | 190
673
32.0 | 146
675
28.1 | 213
678
158.6 | 187
687
139.3 | 142
699
95.4 | | BIG BEND
EVAPORATION
REG INFLOW
RELEASE | 71
12801
12801 | 287
287 | 166
166 | 210
210 | 694
694 | 1145
1145 | 1307
1307 | 5
1572
1572 | 15
1647
1647 | 19
1419
1419 | 16
936
936 | 4
453
453 | 2
210
210 | 2
184
184 | 9
1040 | 914 | 619 | | STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 1682
1420.0
13.8 | 1682
1420.0
9.6 | 1682
1420.0
11.9 | 1682
1420.0
11.8 | 1682
1420.0
11.7 | 1682 | 1682
1420.0
22.0 | 1682 | 1682 | 1682 | 1682 | 1682 | 1682
1420.0
15.2 | 1682
1420.0
11.6 | 1040
1682
1420.0
16.9 | 914
1682
1420.0
14.9 | 619
1682
1420.0
11.1 | | AVE POWER MY
PEAK POW MW
ENERGY GWH | 738.9 | 46
517
16.4 | 56
509
9.4 | 55
509
11.9 | 55
509
39.3 | 87
509
64.9 | 103
509
74.0 | 120
509
89.0 | 125
509
93.3 | 113
517
81.4 | 75
538
55.6 | 77
538
27.6 | 76
538
12.8 | 59
538
11.2 | 84
538
62.2 | 72
538
53.9 | 54
529
36.0 | | FORT RANDAL
NAT INFLOW
DEPLETION
EVAPORATION | LL
1501
80
82 | 190
1 | 89
1 | 114
1 | 298
4 | 159
9 | 224
12 | 111
18
6 | 72
15
19 | 92
7
24 | 60
1 | 5 | 2 | 3 | 23 | 10 | 49
3 | | REG INFLOW
RELEASE
STOR CHANGE | 14141
14141
0 | 475
184
291 | 254
120
134 | 323
323 | 988
988 | 1295
1295
0 | 1519
1519
0 | 1659
1659
0 | 1685
1685 | 1480
1624
-144 | 19
976
1601
-625 | 4
454
767
-314 | 2
211
358
-148 | 2
185
206
-22 | 1052
686
366 | 921
664
257 | 665
461
204 | | STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 3124
1350.0
9.2 | 3415
1353.6
6.2 | 3549
1355.2
8.6 | 3549
1355.2
18.1 | 3549
1355.2
16.6 | 3549
1355.2
21.1 | 3549
1355.2
25.5 | 2540 | 3540 | 2405 | 2780 | 2467 | 2319 | 2297 | 2663 | 2920
1347.2
10.8 | 3124 | | AVE POWER MV
PEAK POW MW
ENERGY GWH | 1402.9 | 52
350
18.5 | 73
355
12.3 | 153
355
33.1 | 141
355
101.3 | 178
355
132.4 | 215
355
154.8 | 227
355
168.9 | 231
355
171.5 | 228
349
164.2 | 209
319
155.4 | 195
297
70.3 | 189
285
31.8 | 95
284
18.2 | 84
311
62.2 | 85
328
63.0 | 67
338
45.0 | | GAVINS POIN
NAT INFLOW
DEPLETION
CHAN STOR | 2252
114
0 | 107
0
6 | 50
0
-5 | 64
0
-18 | 246
5
3 | 319
19
-9 | 281
24
-9 | 211
39
-3 | 170
10
-1 | 135
-5
0 | 157
2
2 | 60
5
0 | 28
2
0 | 32
3
24 | 95
10
3 | 106
1
1 | 191
5 | | EVAPORATION
REG INFLOW
RELEASE
STOR CHANGE | 26
16254
16254 | 298
298 | 165
165 | 370
370 | 1232
1232 | 1586
1586 | 1767
1767 | 1826
1826 | 5
1839
1826
13 | 7
1758
1732 | 6
1752
1752 | 1
821
821 | 383
383 | 1
259
259 | 3
771
771 | 770
770 | 657
696 | | STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 358
1206.0
12.5 | 358
1206.0
10.0 | 358
1206.0
11.9 | 358
1206.0
20.7 | 358
1206.0
20.7 | 358
1206.0
25.8 | 358
1206.0
29.7 | 358
1206.0
29.7 | 371 | 26
397
1207.5
29.1 | 397
1207.5
28.5 | 397
1207.5
27.6 | 397
1207.5
27.6 | 397
1207.5
16.3 |
397
1207.5
12.5 | 397
1207.5
12.5 | -39
358
1206.0
12.5 | | AVE POWER MW
PEAK POW MW
ENERGY GWH | 678.1 | 35
114
12.6 | 42
114
7.0 | 71
114
15.4 | 71
114
51.4 | 88
114
65.6 | 100
114
72.1 | 100
114
74.5 | 101
115
74.9 | 101
117
72.4 | 100
117
74.2 | 97
117
34.8 | 97
117
16.2 | 58
117
11.1 | 45
78
33.1 | 44
78
33.1 | 44
76
29.7 | | GAVINS POIN
NAT INFLOW
DEPLETION
REGULATED FLO | 3100
247
W AT SIO | | 91
3 | 117
4 | 1006
20 | 553
34 | 318
30 | 246
36 | 184
34 | 127
22 | 66
9 | 26
6 | 12
3 | 14
3 | 30
12 | 12
13 | 105
13 | | KAF
KCFS
TOTAL | 19107 | 486
16.3 | 253
18.2 | 483
27.0 | 2218
37.3 | 2105
34.2 | 2055
34.5 | 2036
33.1 | 1976
32.1 | 1837
30.9 | 1809
29.4 | 841
28.3 | 393
28.3 | 269
17.0 | 789
12.8 | 769
12.5 | 788
14.2 | | NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION | 34502
2094
15
1138 | 1885
-43
70 | 879
-20
21 | 1131
-26
-18 | 4197
85
-15 | 4916
601
-33 | 7725
1520
-42 | 4731
933
1 | 1846
118
3 | 1470
-183
37 | 1568
59
30 | 670
-112
0 | 312
-52
0 | 357
-59
-29 | 794
-220
0 | 783
-240
-17 | 1238
-150
7 | | STORAGE
SYSTEM POWER
AVE POWER MW | 43012 | 44523
500 | 45190
532 | 45846
641 | 47725
675 | 49901 | 54009 | 75
55697 | 55212 | 302
54763 | 262
54349 | 62
54227 | 29
54171 | 33
54256 | 136
54345 | 54583 | 55190 | | PEAK POW MW
ENERGY GWH
DAILY GWH | 7586.1 | 2083
180.0
12.0 | 2089 | 2099
138.6
15.4 | 675
2124
486.3
16.2 | 896
2146
667.0
21.5 | 1077
2233
775.2
25.8 | 1152
2246
857.3
27.7 | 1169
2238
870.0
28.1 | 1040
2236
748.9
25.0 | 812
2227
604.4
19.5 | 796
2207
286.7
19.1 | 789
2196
132.6
18.9 | 690
2197
132.5
16.6 | 774
2184
575.8
18.6 | 778
2205
579.1
18.7 | 688
2213
462.4
16.5 | | | INI-SUM | 15MAR | 22MAR | 31MAR | 30APR | 31MAY | 30JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 30NOV | 31DEC | 31JAN | 28FEB | DATE OF STUDY 08/04/03 PRELIMINARY 2003-2004 AOP UPPER QUARTILE RUNOFF SIMULATION 99001 9901 PAGE 1 DATE OF STUDY 08/04/03 TIME OF STUDY 07:30:31 | DATE OF STUDY | 08/04/0 | | PRE | ELIMINA | RY 2003- | 2004 AC | OP UPPER | QUARTI | LE RUNC | FF SIM | JLATION | 99001 | 9901 9 | | .GE | 1 | | |---|--|--|--|--|--|--|---|---|---|--|--|--|---|---|--|--|--| | TIME OF STUDY | 7 07:30:3 | 31 | | CWC | CP, STE | ADY RELE
VALUES | EASE
IN 100 | O AF EX | CEPT AS | INDICA | ATED | | | | STUDY | NO | 5 | | 29FF | EB04
INI-SUM | 15MAR | 2004
22 MA R | 1
31MAR | 30APR | 31MAY | | | | | | 15NOV | 22NOV | 200
30NOV | 31DEC | 31JAN | 28FEB | | FORT PECK-
NAT INFLOW
DEPLETION
EVAPORATION | 8901
310
327 | 296
-17 | 138
-8 | 178
-10 | 739
79 | 1487
325 | 2309
501 | 1130
146
19 | 423
-91
61 | 351
-106
78 | 492
-76
69 | 195
-28
32 | 91
-13
15 | 104
-15
17 | 321
-128
37 | 276
-152 | 371
-96
467 | | MOD INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS | 8264
4718
3545
10934
2212.2
9.5 | 314
179
135
11070
2213.0
6.0 | 146
69
77
11146
2213.5
5.0 | 188
89
99
11245
2214.1
5.0 | 660
298
362
11608
2216.2
5.0 | 1162
369
793
12401
2220.6
6.0 | 1808
476
1332
13733
2227.8
8.0 | 965
461
504
14237
2230.3
7.5 | 453
430
22
14259
2230.4
7.0 | 379
298
81
14339
2230.8
5.0 | 499
255
244
14583
2232.0
4.1 | 191
123
68
14651
2232.4
4.1 | 89
58
32
14683
2232.5
4.1 | 102
95
7
14690
2232.5
6.0 | 412
523
-110
14580
2232.0
8.5 | 428
523
-95
14485
2231.5
8.5 | 472
-5
14480
2231.5
8.5 | | POWER AVE POWER MY PEAK POW MW ENERGY GWH | 760.4 | 75
143
27.1 | 63
143
10.6 | 63
144
13.6 | 64
146
45.7 | 77
151
57.5 | 106
204
76.0 | 101
206
74.9 | 94
206
70.2 | 68
206
48.8 | 56
207
41.8 | 56
207
20.3 | 56
207
9.5 | 82
207
15.6 | 115
207
85.7 | 115
206
85.6 | 115
206
77.3 | | GARRISON-
NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION | 12901
707
12
354 | 482
-55
37 | 225
-26
11 | 289
-33 | 1250
-54 | 1723
162
-11 | 3207
795
-21 | 2405
537
5
21 | 764
56
5
68 | 522
-124
20
85 | 593
-7
9
74 | 236
-97
34 | 110
-45
16 | 126
-52
-19
18 | 260
-143
-25
39 | 316
~124 | 394
-83
0 | | REG INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS | 16570
14118
2452
13157 | 753
476
277
13434
1820.6
16.0 | 330
215
115
13549
1821.1
15.5 | 411
277
134
13684
1821.6
15.5 | 1602
1101
501
14185
1823.6
18.5 | 1919
1261
659
14843
1826.1
20.5 | 2867
1369
1499
16342
1831.5
23.0 | 2313
1383
930
17272 | 1076
1353
-277
16994 | 879
1071
-192
16803 | 790
822
-32
16770 | 423
398
25
16795 | 197
186
12
16807 | 236
286
-49
16758 | 862
1230
-368
16390 | 963
1414
-452
15938
1830.1
23.0 | 949
1277
-328
15610
1828.9
23.0 | | POWER AVE POWER MY PEAK POW MW ENERGY GWH | N 2027.7 | 178
328
64.2 | 174
330
29.2 | 174
331
37.7 | 210
337
150.9 | 235
344
175.1 | 271
360
194.9 | 272
369
202.7 | 268
367
199.7 | 219
365
157.7 | 163
364
121.1 | 163
365
58.6 | 163
365
27.4 | 218
364
41.9 | 241
360
179.5 | 274
356
204.2 | 272
352
182.8 | | OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION | 3200
585
-5
333 | 460
22
26 | 214
10
2 | 276
13 | 394
46
-14 | 285
64
-9 | 749
123
-11 | 246
143
2
21 | 103
93
2
64 | 135
23
18
80 | 85
- 8
20
69 | 91
2
31 | 42
1
15 | 48
1
-20
17 | 18
11
-9
37 | 5
16
-13 | 49
25 | | REG INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS | 16394
13014
3380
13756 | 940
467
473
14229
1590.9
15.7 | 422
78
344
14572
1592.3
5.6 | 539
247
292
14864
1593.4
13.9 | 1435
792
643
15507
1595.9
13.3 | 1473
1179
294
15801
1597.0
19.2 | 1984
1294
689
16490
1599.5
21.8 | 1468
1545
-77
16413 | 1301
1609
-308
16105
1598.1
26.2 | 1121
1403
-282
15823 | 866
908
-42
15781
1596.9
14.8 | 456
440
16
15797 | 213
203
10
15807 | 296
199
96
15903 | 1191
1056
135
16039
1597.9
17.2 | 1390
918
473
16511
1599.6
14.9 | 1301
677
625
17136
1601.8
12.2 | | POWER AVE POWER MY PEAK POW MW ENERGY GWH | i
1929.0 | 185
625
66.4 | 67
632
11.2 | 166
638
35.8 | 161
650
115.8 | 233
656
173.7 | 267
668
192.5 | 310
667
230.9 | 322
661
239.4 | 289
656
207.7 | 181
655
134.5 | 181
655
65.0 | 179
656
30.0 | 154
657
29.6 | 211
660
156.7 | 184
669
137.2 | 152
680
102.4 | | BIG BEND
EVAPORATION
REG INFLOW
RELEASE
STORAGE
ELEV FTMSL
DISCH KCFS | 78
12936
12936
1682
1420.0
13.8 | 467
467
1682
1420.0
15.7 | 78
78
1682
1420.0
5.6 | 247
247
1682
1420.0
13.9 | 792
792
1682
1420.0
13.3 | 1179
1179
1682
1420.0
19.2 | 1294
1294
1682
1420.0
21.8 | 5
1540
1540
1682
1420.0
25.0 | 15
1594
1594
1682
1420.0
25.9 | 19
1384
1384
1682
1420.0
23.3 | 16
892
892
1682
1420.0
14.5 | 7
432
432
1682
1420.0
14.5 | 3
199
199
1682
1420.0
14.4 | 4
196
196
1682
1420.0
12.3 | 9
1047
1047
1682
1420.0
17.0 | 918
918
1682
1420.0
14.9 | 677
677
1682
1420.0
12.2 | | POWER AVE POWER MY PEAK POW MW ENERGY GWH | 746.4 | 74
510
26.5 | 26
509
4.4 | 65
509
14.0 | 62
509
44.9 | 90
509
66.8 | 102
509
73.3 | 117
509
87.2 | 121
509
90.3 | 110
517
79.4 | 71
538
53.1 | 73
538
26.3 | 72
538
12.2 | 62
538
12.0 | 84
538
62.6 | 73
538
54.2 | 58
529
39.3 | | FORT RANDAL
NAT INFLOW
DEPLETION
EVAPORATION
REG INFLOW
RELEASE
STOR CHANGE | 1200
80
88
13969
13969 | 142
1
607
199
408 | 66
1
143
126
17 | 85
1
332
332 | 239
4
1027
1027 | 150
9
1320
1320 | 195
12
1477
1477
 89
18
6
1605
1605 | 65
15
19
1625
1625 | 64
7
24
1418
1562
-144 | 38
1
19
911
1540
-630 | 3
1
7
427
736
-310 | 1
0
3
197
344
-147 | 1
1
3
193
215
-22 | 18
3
8
1055
689 | 5
3
920
683 | 39
3
713
489
224 | | STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 3124
1350.0
9.2 | 3532
1355.0
6.7 | 3549
1355.2
9.1 | 3549
1355.2
18.6 | 3549
1355.2
17.3 | 3549
1355.2
21.5 | 3549
1355.2
24.8 | 3549
1355.2
26.1 | 3549
1355.2
26.4 | 3405
1353.5
26.2 | 2775
1345.2
25.0 | 2466
1340.4
24.7 | 2319
1337.9
24.8 | 2297
1337.5
13.6 | 366
2663
1343.5
11.2 | 237
2900
1347.0
11.1 | 3124
1350.0
8.8 | | AVE POWER MY
PEAK POW MW
ENERGY GWH
GAVINS POIN | 1386.2 | 56
354
20.1 | 78
355
13.0 | 157
355
33.9 | 146
355
105.3 | 181
355
134.8 | 209
355
150.6 | 220
355
163.5 | 222
355
165.5 | 219
349
158.0 | 201
318
149.5 | 188
297
67.5 | 182
285
30.5 | 99
284
19.0 | 84
311
62.5 | 87
327
64.6 | 71
338
47.7 | | NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION
REG INFLOW | 1899
114
0
28
15725 | 93
0
5 | 44
0
-5 | 56
0
-18
370 | 207
5
3 | 257
19
-8
1550 | 237
24
-6
1684 | 178
39
-2
2
1740 | 144
10
-1
5
1753 | 114
-5
0
7
1674 | 132
2
2
6
1666 | 51
5
1
3
780 | 24
2
0
1
364 | 27
3
21
1
259 | 86
10
4
3 | 89
1
0
771 | 161
4 | | RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL | 15725
358
1206.0 | 298
358
1206.0 | 358
1206.0 | 370
358
1206.0 | 358
1206.0 | 358
1206.0 | 358
1206.0 | 1740
358
1206.0 | 1740
13
371
1206.5 | 1648
26
397
1207.5 | 397
1207.5 | 780
397
1207.5 | 364
397
1207.5 | 259
397
1207.5 | | 771
397 | 654
693
-39
358
1206.0 | | DISCH KCFS POWER AVE POWER M PEAK POW MW ENERGY GWH | 12.5
V
658.6 | 10.0
35
114
12.7 | 11.9
42
114
7.0 | 20.7
71
114
15.4 | 20.7
71
114
51.4 | 25.2
86
114
64.1 | 28.3
96
114
69.3 | 28.3
96
114
71.6 | 28.3
97
115
72.0 | 27.7
96
117
69.2 | 27.1
95
117
70.6 | 26.2
92
117
33.1 | 26.2
92
117
15.4 | 16.3
58
117
11.1 | 12.5
44
78
32.9 | 12.5
45
78
33.1 | 12.5
44
76
29.6 | | GAVINS POIN
NAT INFLOW
DEPLETION
REGULATED FLO | 2500
247 | 181
6 | 85
3 | 109
4 | 811
20 | 406
34 | 252
30 | 199
36 | 148
34 | 97
22 | 53
9 | 21
6 | 10 | 11
3 | 24
12 | 10
13 | 84
13 | | KAF
KCFS | 17978 | 473
15.9 | 247
17.8 | 475
26.6 | 2023
34.0 | 1922
31.2 | 1906
32.0 | 1903
31.0 | 1854
30.2 | 1723
29.0 | 1710
27.8 | 795
26.7 | 371
26.7 | 267
16.8 | 778
12.7 | 768
12.5 | 764
13.8 | | TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE | 30601
2043
6
1208
43012 | 1654
-43
69
44304 | 772
-20
8
44857 | 992
-26
-18
45382 | 3640
100
-11
46888 | 4308
613
-28
48634 | 6949
1485
-38
52154 | 4247
919
5
73
53510 | 1647
117
7
232
52960 | 1283
-183
38
292
52449 | 1393
-79
31
253
51989 | 595
-112
1
114
51789 | 278
-52
0
53
51695 | 317
-60
-18
60
51727 | 727
-235
-30
131
51750 | 701
-243
-13 | 1098
-138
-4 | | SYSTEM POWER
AVE POWER MV
PEAK POW MW
ENERGY GWH
DAILY GWH | ₹
₹
7508.3 | 603
2075
217.1
14.5 | 449
2083
75.5
10.8 | 697
2091
150.5
16.7 | 714
2112
513.9
17.1 | 903
2129
672.1
21.7 | 1051
2211
756.8
25.2 | 1117
2220
830.9
26.8 | 1125
2213
837.1
27.0 | 1001
2210
720.8
24.0 | 767
2200
570.7
18.4 | 752
2179
270.8
18.1 | 744
2168
125.0
17.9 | 673
2167
129.2
16.1 | 780
2155
580.0
18.7 | 778
2174
578.9
18.7 | 713
2182
478.9
17.1 | | | TMT. CIM | 1 EMAD | 2 2 M A D | 21M2D | 20200 | 2 1 142 17 | 20 777 | 31 777 | 0 1 3 11 - | 200= | | | | | | | | INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB DATE OF STUDY 08/04/03 CWCP, STEADY RELEASE, 40-DAY SHORTENED SEASON STUDY NO 6 TIME OF STUDY 10:12:32 | TIME OF STUDY 10 | | | | | | | RELEASE
O AF EX | | AY SHORT | | EASON | | | STUDY | МО | 6 | | |---|---|--|--|---|---|---|--|---|---|---|--|--|--|---|---|---|--| | 29FEB04
INI | -SUM | 15MAR | 2004
22MAR | 31MAR | 30APR | | 3 OJUN | | | | | 15NOV | 22NOV | 200
30NOV | | 31JAN | 28FEB | | DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE 1 ELEV FTMSL 22 DISCH KCFS | | 264
1
263
179
84
10482
209.5
6.0 | 123
1
123
69
53
10535
2209.8
5.0 | 158
1
158
89
68
10604
2210.2
5.0 | 628
29
599
357
242
10846
2211.7
6.0 | 1210
259
951
461
490
11336
2214.6
7.5 | 1851
386
1465
536
929
12265
2219.9
9.0 | 829
145
23
661
553
108
12373
2220.5
9.0 | 324
-83
72
335
553
-219
12154
2219.3
9.0 | 319
-99
91
327
331
-4
12150
2219.2
5.6 | 398
-68
80
386
257
129
12279
2220.0
4.2 | 188
-35
36
186
125
61
12340
2220.3
4.2 | 88
-16
17
87
97
-11
12329
2220.2
7.0 | 100
-18
19
99
127
-28
12301
2220.1
8.0 | 310
-125
42
393
553
-160
12141
2219.2
9.0 | 261
-152
413
553
-140
12001
2218.4
9.0 | 349
-105
454
500
-46
11955
2218.1
9.0 | | POWER
AVE POWER MW
PEAK POW MW
ENERGY GWH 8 | 28.3 | 74
139
26.6 | 62
139
10.4 | 62
139
13.4 | 75
141
53.7 | 94
144
70.1 | 115
196
82.9 | 117
196
86.8 | 117
195
86.7 | 72
195
51.9 | 54
196
40.3 | 55
196
19.7 | 91
196
15.3 | 104
196
19.9 | 116
195
86.6 | 116
194
86.3 | 116
193
77.7 | | DEPLETION CHAN STOR EVAPORATION REC INFLOW REC INFLOW 1 STOR CHANGE STORAGE ELLEV FIMSL 1 | 1001
1212
-5
448
4678
2777
1901
2506
16.9 1
21.5 | 469
41
27
634
417
218
12724
817.8
14.0 | 219
19
11
280
194
86
12810
1818.1
14.0 | 282
24
346
250
96
12906
1818.5
14.0 | 853
56
-11
1143
893
251
13157
1819.5
15.0 | 1423
213
-16
1655
1199
456
13613
1821.3
19.5 | 2958
750
-16
2728
1250
1478
15091
1827.0
21.0 | 2066
574
27
2019
1261
758
15849
1829.8
20.5 | 581
66
983
1230
-247
15602
1828.9
20.0 | 497
-111
35
108
867
888
-21
15581
1828.8
14.9 | 454
8
14
94
623
666
-43
15538
1828.6
10.8 | 192
-97
0
43
370
321
49
15587
1828.8
10.8 | 89
-45
-29
20
183
236
-53
15534
1828.6
17.0 | 102
-51
-10
23
248
286
-38
15495
1828.5
18.0 | 253
-105
-10
49
852
1230
-377
15118
1827.1
20.0 | 237
-83
873
1291
-418
14700
1825.5
21.0 | 326
-47
873
1166
-293
14407
1824.4
21.0 | | AVE POWER MW
PEAK POW MW
ENERGY GWH 17 | 85.1 | 153
320
55.2 | 154
321
25.9 | 154
322
33.4 | 166
325
119.7 | 217
330
161.8 | 240
347
172.8 | 241
355
179.3 | 237
352
176.1 | 177
352
127.2 | 128
352
95.6 | 128
352
46.1 | 201
352
33.7 | 212
351
40.7 | 234
347
174.3 | 243
343
181.1 | 241
339
162.2 | | DEPLETION CHAN STOR EVAPORATION REG INFLOW 1 RELEASE 1 STOR CHANGE STORAGE 1 ELEV FIMSL 15 | | 317
22
37
748
369
378
13466
587.8
12.4 | 148
10
332
204
127
13594
1588.3
14.7 | 190
13
426
260
167
13761
1589.0
14.5 | 364
46
-5
1206
977
229
13989
1589.9
16.4 | 236
64
-21
1350
1234
116
14105
1590.4
20.1 | 689
123
-7
1809
1309
500
14605
1592.4
22.0 |
162
143
24
1257
1589
-332
14273
1591.1
25.8 | 33
93
2
76
1096
1427
-331
13942
1589.7
23.2 | 118
23
24
96
911
584
327
14269
1591.1
9.8 | 14
-8
19
84
623
900
-277
13992
1590.0 | 5
2
0
388
287
259
28
14020
1590.1
8.7 | 2
1
-29
18
191
129
62
14082
1590.3
9.3 | 3
1
-5
20
262
146
117
14199
1590.8
9.2 | -20
11
-9
45
1145
930
214
14413
1591.7
15.1 | 16
-5
1271
942
329
14742
1593.0
15.3 | 40
25
1181
886
296
15038
1594.1
15.9 | | AVE POWER MW
PEAK POW MW | 35.1 | 144
610
51.7 | 171
613
28.7 | 170
616
36.7 | 193
621
138.6 | 236
623
175.6 | 260
633
187.3 | 306
626
227.6 | 273
620
203.0 | 116
626
83.5 | 173
621
128.5 | 103
621
36.9 | 109
622
18.4 | 109
625
20.9 | 179
629
133.4 | 183
636
135.8 | 191
641
128.6 | | RELEASE 1
STORAGE
ELEV FTMSL 14
DISCH KCFS
POWER
AVE POWER MW | 103
2040
2040
1682
20.0 1
15.3 | 12.4
59 | 14.7
69 | 14.5
68 | 16.4
77 | 20.1
94 | 1309
1309
1682
1420.0
22.0 | 25.7
120 | 22.9
108 | 9.4
48 | 14.3
72 | 10
249
249
1682
1420.0
8.4 | 5
124
124
1682
1420.0
8.9 | 8.9
4 5 | 14.9
75 | 942
942
1682
1420.0
15.3 | 886
886
1682
1420.0
15.9 | | | 99.7 | 517
21.2 | 509
11.6 | 509
14.7 | 509
55.4 | 509
69.9 | 509
74.1 | 509
89.6 | 518
80.5 | 538
34.3 | 538
53.6 | 538
15.3 | 538
7.6 | 538
8.6 | 538
55.8 | 538
56.1 | 529
51.4 | | RELEASE 1 STOR CHANGE STORAGE ELEV FTMSL 13 DISCH KCFS POWER AVE POWER MW PEAK POW MW | 900
80
104
2749
2750
-1
3124
50.0 1
9.6 | 122
1
490
199
291
3415
353.6
6.7
56
350
20.0 | 57
1
261
127
134
3549
1355.2
9.1
77
355
13.0 | 73
1
332
332
3549
1355.2
18.6
157
355
34.0 | 115
4
1088
1088
3549
1355.2
18.3
155
355
111.4 | 140
9
1365
1365
3549
1355.2
22.2
187
355
139.4 | 185
12
1482
1482
3549
1355.2
24.9
210
355
151.1 | 74
18
8
1631
1631
0
3549
1355.2
26.5
223
355
166.1 | 57
15
25
1424
1598
-174
3375
1353.1
26.0
217
348
161.5 | 42
7
26
560
1536
-975
2400
1339.3
25.8
201
291
145.0 | 2
1
18
861
964
-103
2296
1337.5
15.7
115
283
85.5 | 2
1
8
242
242
0
2296
1337.5
8.1
60
283
21.4 | 1
0
4
120
121
0
2296
1337.5
8.7 | 1
1
4
136
137
0
2296
1337.5
8.6 | 10
3
10
916
713
203
2499
1341.0
11.6
86
300
63.9 | 3
939
689
250
2749
1344.8
11.2
86
317
63.8 | 19
3
902
528
374
3123
1350.0
9.5
76
338
51.0 | | DEPLETION CHAN STOR EVAPORATION REG INFLOW 1. RELEASE 1. STOR CHANGE STORAGE ELEV FTMSL 12. | 1450
114
-1
38
4048
4048
358
06.0 1 | 92
0
6
298
298
358
206.0
10.0 | 43
0
-5
165
165 | 55
0
-18
370
370 | 148
5
1
1232
1232 | 174
19
-8
1513
1513 | 166
24
-5
1619
1619 | 86
39
-3
2
1672
1672
358
1206.0
27.2 | 103
10
1
7
1685
1672
13 | 77
-5
0
9
1609
1583
26 | 122
2
19
8
1094
1094 | 50
5
14
4
298
298 | 23
2
-1
2
139
139 | 27
3
0
2
159
159 | 77
10
-6
4
770
770 | 79
1
1
767
767 | 127
3
658
697
-39
358
1206.0
12.5 | | AVE POWER MW
PEAK POW MW | 89.0 | 35
114
12.6 | 42
114
7.0 | 71
114
15.4 | 71
114
51.4 | 84
114
62.7 | 93
114
66.8 | 93
114
69.0 | 93
115
69.3 | 92
117
66.6 | 63
117
46.8 | 36
117
12.8 | 36
117
6.0 | 36
117
6.8 | 45
78
33.1 | 44
78
33.0 | 44
76
29.7 | | DEPLETION REGULATED FLOW A' KAF 1: KCFS | 1550
247 | 169
6 | 79
3
241
17.4 | 102
4
467
26.2 | 199
20
1411
23.7 | 310
34
1789
29.1 | 224
30
1813
30.5 | 129
36
1765
28.7 | 96
34
1734
28.2 | 60
22
1621
27.2 | 42
9
1127
18.3 | 16
6
308
10.4 | 7
3
144
10.4 | 9
3
164
10.4 | 21
12
779
12.7 | 5
13
759
12.4 | 82
13
766
13.8 | | DEPLETION CHAN STOR EVAPORATION STORAGE 4: SYSTEM POWER AVE POWER MW | 4601
2359
-10
1475
1156 | 1435
72
69
42127
521 | 669
33
6
42528
575 | 860
43
-18
42860
683 | 2307
160
-15
43581
736 | 3493
598
-45
44642
913 | 6073
1325
-28
47550
1021 | 3346
955
-1
90
48084
1100 | 1194
135
3
286
47126 | 1113
-163
52
355
46478 | 1032
-56
52
307
46184 | 452
-118
14
138
46322 | 211
-55
-59
65
46320 | 241
-63
-15
74
46371 | 651
-194
-25
161
46250 | 582
-202
-4
46271 | 943
-111
3
46562 | | PEAK POW MW
ENERGY GWH 688
DAILY GWH | | 2049
187.5
12.5 | 2051
96.6
13.8 | 2056
147.6
16.4 | 2065
530.2
17.7 | 2120
679.4
21.9 | 2154
735.0
24.5 | 2156
818.4
26.4 | 2148
777.1
25.1 | 2119
508.5
16.9 | 2107
450.3
14.5 | 423
2108
152.3
10.2 | 545
2109
91.6
13.1 | 568
2110
109.1
13.6 | 735
2087
547.1
17.6 | 747
2105
556.1
17.9 | 745
2117
500.6
17.9 | | INI- | -SUM : | MANCI | ∠∠MAR | 3 IMAR | 30APR | 31MAY | 30JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 3 ONOV | 31DEC | 31JAN | 28FEB | DATE OF STUDY 08/04/03 PRELIMINARY 2003-2004 AOP LOWER QUARTILE RUNOFF 99001 9901 PAGE 1 TIME OF STUDY 07:38:28 CWCP, STEADY RELEASE, 39-DAY SHORTENED SEASON STUDY NO 7 | DATE OF STUDY 08/04/ | 03 | | | | | | 2003-200 | | | | | 99001 | 9901 5 | 9901 PF | AGE | _ | |---|---|--|---|---|---|--|--|--|--|---|--|--|--|---|--|---| | TIME OF STUDY 07:38: | 28 | | | | | | RELEASI
00 AF EX | | | | EASON | | | STUDY | NO | 7 | | 29FEB04
INI-SUN | 1 15MAR | 200-
22MAR | | 30APR | 31MAY | 30JUN | | | 30SEP | 310CT | 15NOV | 22NOV | 200
30 N OV | 31DEC | 31JAN | 28FEB | | FORT PECK NAT INFLOW 600 DEPLETION 266 EVAPORATION 44(MOD INFLOW 5294 RELEASE 531(STOR CHANGE -22 STORAGE 9996 ELEV FTMSL 2206.3 | -12
254
149
105
10103
2207.1 | 113
-5
118
69
10152
2207.5
5.0 | | 525
28
497
494
3
10218
2207.9
8.3 | 925
165
760
646
114
10332
2208.6
10.5 | 1454
279
1175
476
699
11031
2212.8
8.0 | 633
184
27
422
492
-70
10961
2212.4
8.0 | 263
-19
84
198
492
-294
10667
2210.6
8.0 | 252
-89
106
235
347
-111
10556
2209.9
5.8 | 324
-59
92
291
245
46
10602
2210.2 | 167
-10
42
135
119
16
10618
2210.3
4.0 | 78
-4
19
63
97
-34
10584
2210.1
7.0 | 89
-5
22
72
127
-55
10528
2209.8
8.0 | 295
-61
48
308
492
-184
10345
2208.6
8.0 | 212
-79
291
510
-219
10125
2207.3
8.3 | 283
-40
323
472
-149
9976
2206.4
8.5 | | POWER
AVE POWER MW
PEAK POW MW
ENERGY GWH 790.3 | 61
136
22.0 | 61
136
10.3 | 61
137
13.2 | 101
137
73.1 | 125
138
93.3 | 99
186
71.4 | 100
186
74.5 | 100
183
74.1 | 72
182
52.0 | 49
183
36.8 | 50
183
17.8 | 87
183
14.6 | 99
182
19.0 | 98
181
73.3 | 102
179
75.5 | 103
178
69.5 | | GARRISON NAT INFLOW 9400 DEPLETION 126: CHAN STOR EVAPORATION 511 REG INFLOW 1293 RELEASE 1298: STOR CHANGE -5: STORAGE 12047 ELEV FTMSL 1814.5 DISCH KCFS 21.5 | 36
38
594
446
148
12195 | 207
17
260
208
51
12246
1815.8
15.0 | 266
21
334
268
66
12312
1816.1
15.0 | 712
85
-36
1085
1083
2
12314
1816.1 | 1197
172
-24
1647
1550
97
12411
1816.5
25.2 | 2521
625
27
2399
1220
1179
13591
1821.3
20.5 | 1765
464
31
1762
1230
532
14123
1823.3
20.0 | 496
99
790
1199
-409
13713
1821.7
19.5 |
417
-64
23
124
727
872
-145
13568
1821.2 | 400
69
20
108
488
613
-125
13442
1820.7 | 164
-76
0
49
309
296
13
13455
1820.7 | 76
-35
-32
23
154
236
-82
13373
1820.4 | | 222
-57
56
715
1199
-484
12822
1818.2 | 165
-37
-3
709
1199
-490
12332
1816.1 | 262
-15
-2
747
1083
-336
11996
1814.7 | | POWER AVE POWER MW PEAK POW MW ENERGY GWH 1731.5 | 162
313 | 162
314
27.3 | 163
315
35.1 | 18.2
197
315
141.9 | 271
316
201.3 | 226
330
162.7 | 226
336
168.0 | 221
331
164.1 | 14.7
165
330
118.9 | 10.0
112
328
83.5 | 10.0
112
328
40.4 | 17.0
190
327
31.9 | 201
327
38.5 | 19.5
216
321
160.3 | 19.5
213
315
158.1 | 19.5
210
311
141.1 | | DISCH KCFS 15.9 | 22
32
610
406
205
12825
1585.0 | 72
10
270
257
13
12838
1585.1
18.5 | 92
13
0
347
368
-21
12817
1585.0
20.6 | 229
46
-16
1250
1237
13
12830
1585.1
20.8 | 130
64
-35
1581
1487
94
12925
1585.5
24.2 | 577
123
23
1697
1431
266
13190
1586.6
24.1 | 102
143
2
28
1163
1695
-532
12659
1584.3
27.6 | 24
93
2
87
1045
1520
-475
12184
1582.2
24.7 | 65
23
25
109
830
694
135
12319
1582.8
11.7 | 9
-8
24
94
559
1000
-441
11878
1580.8
16.3 | 42
253
266
-13
11865
1580.7
8.9 | 1
-36
20
180
133
46
11911
1580.9
9.6 | 1
-5
23
257
151
106
12017
1581.4
9.5 | -35
11
-8
49
1096
1110
-14
12003
1581.3
18.1 | -6
16
1177
981
196
12199
1582.2
16.0 | 36
25
1094
727
367
12566
1583.9
13.1 | | POWER
AVE POWER MW
PEAK POW MW
ENERGY GWH 1845.5 | 156
595
56.0 | 211
596
35.4 | 235
595
50.8 | 237
595
170.7 | 276
598
205.2 | 276
604
198.5 | 314
591
233.9 | 279
580
207.3 | 132
583
94.7 | 182
573
135.7 | 100
573
35.9 | 107
574
18.0 | 107
576
20.5 | 202
576
150.1 | 179
581
133.1 | 148
589
99.5 | | DISCH KCFS 15.9 POWER AVE POWER MW PEAK POW MW | 406
406
1682
1420.0
13.6
65
517 | 257
257
1682
1420.0
18.5 | 20.6
96
509 | 20.8
97
509 | 24.2
113
509 | 24.1
113
509 | 8
1687
1687
1682
1420.0
27.4
128
509 | 24.3
115
518 | 31
664
664
1682
1420.0
11.2
56
538 | 27
973
973
1682
1420.0
15.8 | 12
254
254
1682
1420.0
8.5
43
538 | 6
128
128
1682
1420.0
9.2
47
538 | 9.1
46
538 | 14
1096
1096
1682
1420.0
17.8 | 981
981
1682
1420.0
16.0
78
538 | 727
727
1682
1420.0
13.1 | | ENERGY GWH 772.9 FORT RANDALL NAT INFLOW 500 DEPLETION 80 EVAPORATION 13617 REG INFLOW 13617 RELEASE 13618 STOR CHANGE -1 STORAGE 3124 ELEV FTMSL 1350.0 DISCH KCFS 10.0 POWER AVE POWER MW | 68
1
473
199
273
3397
1353.4
6.7 | 11.0 | 20.8
41
1
408
391
17
3549
1355.2
21.9 | 21.8 | 24.9 | 26.0 | 95.5
26
18
10
1685
1685
0
3549
1355.2
27.4 | 27.2 | 40.6
23
7
33
639
1610
-971
2403
1339.4
27.1 | 17.2 | 8.2 | 8.8 | 8.7 | 11.7 | 11.4 | 42.2
15
3
739
550
189
3123
1350.0
9.9 | | PEAK POW MW ENERGY GWH 1337.8 | 56
349
20.0 | 93
354
15.6 | 185
355
39.9 | 184
355
132.5 | 209
355
155.9 | 219
355
157.9 | 231
355
171.5 | 227
348
168.9 | 211
291
152.0 | 126
283
93.7 | 60
283
21.5 | 283
10.8 | 283
12.3 | 88
311
65.2 | 89
329
66.5 | 80
338
53.7 | | NAT INFLOW | 0
6
298
298
358
1206.0 | 43
0
-8
187
187
358
1206.0
13.5 | 55
0 -21
425
425
358
1206.0
23.8 | 124
5
0
1416
1416
358
1206.0
23.8 | 138
19
-6
1642
1642
358
1206.0
26.7 | 143
24
-2
1666
1666
358
1206.0
28.0 | 81
39
-3
3
1722
1722
358
1206.0
28.0 | 80
10
0
9
1735
1722
13
371
1206.5
28.0 | 58
-5
0
11
1662
1636
26
397
1207.5
27.5 | 105
2
18
10
1168
1168
397
1207.5
19.0 | 47
5
17
5
298
298
397
1207.5
10.0 | 22
2
-1
2
139
139
397
1207.5
10.0 | 25
3
0
2
159
159
397
1207.5
10.0 | 70
10
-5
5
769
769
397
1207.5
12.5 | 68
1
1
769
769
397
1207.5
12.5 | 101
3
654
693
-39
358
1206.0
12.5 | | AVE POWER MW
PEAK POW MW
ENERGY GWH 615.4 | 35
114
12.6 | 47
114
7.9 | 82
114
17.6 | 82
114
58.7 | 91
114
67.8 | 95
114
68.6 | 95
114
70.9 | 96
115
71.3 | 95
117
68.7 | 67
117
49.9 | 36
117
12.8 | 36
117
6.0 | 36
117
6.8 | 44
78
33.0 | 44
78
33.0 | 44
76
29.6 | | GAVINS POINT - SIC
NAT INFLOW 900
DEPLETION 247
REGULATED FLOW AT SI
KAF 15360
KCFS | 115
6
OUX CITY | 54
3 | 69
4
490
27.5 | 90
20
1486
25.0 | 174
34
1782
29.0 | 125
30
1761
29.6 | 75
36
1761
28.6 | 56
34
1744
28.4 | 35
22
1649
27.7 | 24
9
1183
19.2 | 13
6
305
10.2 | 6
3
142
10.2 | 7
3
162
10.2 | 13
12
770
12.5 | -3
13
753
12.2 | 48
13
728
13.1 | | TOTAL NAT INFLOW 19500 DEPLETION 2555 CHAN STOR 1 EVAPORATION 1714 STORAGE 39829 SYSTEM POWER | 54
77
40560 | 520
25
-8
40808 | 668
32
-21
40933 | 1744
188
-52
40951 | 2615
463
-64
41257 | 4950
1093
48
43401 | 2682
884
0
107
43331 | 968
232
3
335
41992 | 850
-106
40
414
40925 | 863
14
61
355
40297 | 390
-73
17
159
40313 | 182
-34
-70
74
40243 | 208
-39
-16
85
40226 | 570
-82
-13
185
39911 | 431
-83
-3
39670 | 745
-14
1
39702 | | AVE POWER MW PEAK POW MW ENERGY GWH 7093.4 DAILY GWH INI-SUM | 534
2025
192.2
12.8 | 661
2025
111.1
15.9 | 822
2025
177.5
19.7 | 899
2025
647.0
21.6 | 1086
2030
807.7
26.1 | 1028
2099
740.2
24.7 | 1095
2092
814.4
26.3 | 1037
2077
771.3
24.9 | 732
2042
527.0
17.6 | 617
2022
458.9
14.8 | 400
2022
144.0
9.6 | 531
2022
89.2
12.7 | 552
2024
105.9
13.2 | 736
2005
547.6
17.7 | 704
2020
524.0
16.9 | 648
2021
435.5
15.6 | | | | | | - V-16 IV | 27.01 | 200014 | 21001 | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 3 ONOV | 31DEC | 31JAN | 28FEB | DATE OF STUDY 08/04/03 PRELIMINARY 2003-2004 AOP LOWER DECILE RUNOFF 9901 9901 9901 PAGE 1 TIME OF STUDY 07:44:20 CWCP, STEADY RELEASE, 39-DAY SHORTENED SEASON STUDY NO 8 | TIME OF STU | | | | | | | | | 34 AOP 1
3, 39-DA | | | | 33001 | 3301 | STUDY | NO | 8 | |--|--|---|--|---|--|---|---|---|---|--|---|---|--|--|--|--|--| | | FEB04 | 20 | 200 | 4 | | | | | KCEPT AS | | | | | 200 | | | | | 23. | INI-SUM | 15MAR | | | 30APR | 31MAY | 30JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 30NOV | 31DEC | 31JAN | 28FEB | | FORT PEC NAT INFLOW DEPLETION EVAPORATIO MOD INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS | 5100
401
N 415
4284
5335
E -1052
9998 | 234
-12
246
149
97
10095
2207.1
5.0 | 109
-5
115
69
45
10140
2207.4
5.0 | | 515
94
421
464
-43
10155
2207.5 | | 996
344
652
506
146
10238
2208.0
8.5 | 439
175
26
238
492
-254
9984
2206.4
8.0 | 253
20
80
153
492
-339
9645
2204.3
8.0 | 242
-57
99
200
351
-151
9494
2203.3 | 320
-93
87
326
248
78
9573
2203.8 | 159
-28
39
147
119
28
9600
2204.0
4.0 | 74
-13
18
68
97
-29
9572
2203.8
7.0 | 85
-15
21
78
127
-49
9523
2203.5
8.0 | 271
-93
45
319
523
-204
9319
2202.1
8.5 | 205
-88
293
523
-230
9089
2200.6
8.5 | 275
-54
329
472
-143
8946
2199.7
8.5 | | POWER
AVE POWER
PEAK POW M
ENERGY GWH | W | 61
136
22.0 |
61
136
10.3 | 61
137
13.2 | 95
136
68.6 | 120
136
89.5 | 104
180
74.7 | 98
178
72.5 | 97
175
71.9 | 71
174
50.9 | 48
174
36.0 | 48
175
17.3 | 84
174
14.1 | 96
174
18.4 | 101
172
75.3 | 101
170
74.8 | 100
169
67.1 | | GARRISO NAT INFLOW DEPLETION CHAN STOR EVAPORATIO. REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER | 7299
1165
0
N 491
10978
12299
E -1321
12047 | 270
36
38
421
417
5
12052
1815.0
14.0 | 126
17
179
180
-2
12050
1814.9
13.0 | | 700
85
-31
1049
1113
-64
11983
1814.7
18.7 | 903
172
-24
1322
1402
-80
11903
1814.3
22.8 | 2020
525
16
2017
1101
916
12820
1818.2
18.5 | | 361
70
95
688
1076
-388
12690
1817.6
17.5 | 277
-82
23
118
614
914
-300
12390
1816.4
15.4 | 390
57
20
103
499
618
-119
12271
1815.9
10.0 | 161
-57
0
46
291
301
-10
12261
1815.8
10.1 | 75
-26
-33
22
145
208
-64
12197
1815.6
15.0 | 86
-30
-11
25
208
270
-62
12135
1815.3
17.0 | 108
-16
-5
52
589
1138
-549
11586
1813.0
18.5 | 683
1168
-486
11100
1810.8
19.0 | 223
14
0
681
1055
-374
10726
1809.1
19.0 | | AVE POWER DEAK POW MENERGY GWH | W
1600.7 | 151
312
54.3 | 140
312
23.6 | 140
311
30.3 | 201
311
144.4 | 243
310
181.0 | 200
321
144.4 | 199
324
147.7 | 193
319
143.4 | 168
316
120.8 | 109
314
81.4 | 110
314
39.5 | 162
313
27.3 | 183
313
35.2 | 197
306
146.9 | 199
299
148.4 | 196
294
132.0 | | OAHE- NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANG. STORAGE ELEV FTMSL DISCH KCFS POWER | 1049
585
12
N 418
12356
13714
E -1358
12621 | 197
22
37
629
410
219
12840
1585.1
13.8 | 92
10
5
267
276
-9
12831
1585.1
19.9 | 118
13
337
378
-41
12790
1584.9
21.2 | 183
46
-28
1221
1262
-40
12749
1584.7
21.2 | 100
64
-20
1418
1510
-92
12657
1584.3
24.6 | 215
123
21
1214
1446
-232
12425
1583.3
24.3 | 82
143
3
27
1021
1713
-691
11734
1580.1
27.9 | 21
93
81
925
1537
-612
11122
1577.2
25.0 | 64
23
11
101
866
726
140
11262
1577.8
12.2 | 5
-8
28
87
572
1058
-486
10775
1575.4
17.2 | -5
2
0
39
255
270
-15
10760
1575.4
9.1 | -2
1
-26
18
161
136
25
10785
1575.5 | -3
1
-11
21
235
153
81
10867
1575.9
9.7 | -48
11
-8
45
1025
952
73
10940
1576.3
15.5 | -12
16
-3
1138
966
171
11112
1577.1
15.7 | 41
25
1071
920
151
11263
1577.8
16.6 | | AVE POWER I
PEAK POW M
ENERGY GWH | W
1842.7 | 157
596
56.6 | 227
595
38.1 | 242
594
52.2 | 242
594
173.9 | 279
591
207.5 | 275
586
197.9 | 311
569
231.1 | 274
554
203.8 | 133
558
96.1 | 187
545
139.0 | 98
544
35.3 | 105
545
17.7 | 105
547
20.1 | 168
549
124.7 | 171
554
127.0 | 181
558
121.6 | | BIG BEN
EVAPORATION
REG INFLOW
RELEASE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER
AVE POWER! | N 129
13585
13585
1682
1420.0
15.9 | 410
410
1682
1420.0
13.8 | 276
276
1682
1420.0
19.9 | 378
378
1682
1420.0
21.2 | 1262
1262
1682
1420.0
21.2 | 1510
1510
1682
1420.0
24.6 | 1446
1446
1682
1420.0
24.3 | 8
1705
1705
1682
1420.0
27.7 | 24
1513
1513
1682
1420.0
24.6 | 31
695
695
1682
1420.0
11.7 | 27
1031
1031
1682
1420.0
16.8 | 12
258
258
1682
1420.0
8.7 | 6
130
130
1682
1420.0
9.3 | 7
147
147
1682
1420.0
9.3 | 14
938
938
1682
1420.0
15.3 | 966
966
1682
1420.0
15.7 | 920
920
1682
1420.0
16.6 | | PEAK POW M
ENERGY GWH | 788.7 | 518
23.5 | 510
15.7 | 509
21.4 | 509
71.5 | 509
85.5 | 509
81.9 | 509
96.6 | 518
86.6 | 538
42.5 | 538
62.8 | 538
15.8 | 538
8.0 | 538
9.0 | 538
56.9 | 538
57.5 | 529
53.4 | | FORT RANDI
NAT INFLOW
DEPLETION
EVAPORATION
REG INFLOW
RELEASE
STOR CHANGI
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 300
80
13669
13670
3124
1350.0 | 6.8 | 11.1 | 33
1
411
394
17
3549
1355.2
22.0 | 43
4
1301
1301
0
3549
1355.2
21.9 | 35
9
1536
1536
3549
1355.2
25.0 | 120
12
1554
1554
3549
1355.2
26.1 | 13
18
10
1690
1690
0
3549
1355.2
27.5 | 36
15
31
1503
1677
-174
3375
1353.1
27.3 | -10
7
33
638
1613
-975
2399
1339.3
27.1 | -52
1
23
955
1058
-103
2296
1337.5
17.2 | -3
1
10
245
246
0
2296
1337.5
8.3 | -1
0
5
123
123
0
2296
1337.5
8.9 | -1
15
140
140
0
2296
1337.5
8.8 | 3
12
922
719
203
2499
1341.0
11.7 | -6
3
957
707
250
2749
1344.8
11.5 | 12
3
929
555
374
3123
1350.0
10.0 | | AVE POWER ! PEAK POW MY ENERGY GWHGAVINS PO: | 1339.9 | 56
349
20.3 | 94
354
15.8 | 186
355
40.2 | 185
355
132.9 | 210
355
156.6 | 220
355
158.4 | 231
355
172.0 | 228
348
169.3 | 211
291
152.2 | 126
283
93.7 | 60
283
21.7 | 65
283
10.9 | 64
283
12.4 | 87
300
64.5 | 88
317
65.5 | 80
338
53.6 | | NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION
REG INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 1200
114
-1
47
14708
14708 | 87
0
6
296
296
358
1206.0
10.0 | 41
0
-8
187
187
358
1206.0
13.5 | 52
0
-21
425
425
358
1206.0
23.8 | 120
5
0
1416
1416
358
1206.0
23.8 | 131
19
-6
1642
1642
358
1206.0
26.7 | 138
24
-2
1666
1666
358
1206.0
28.0 | 76
39
-3
3
1722
1722
358
1206.0
28.0 | 76
10
0
9
1735
1722
13
371
1206.5
28.0 | 55
-5
0
11
1662
1636
26
397
1207.5
27.5 | 104
2
18
10
1168
1168
1207.5
19.0 | 45
5
17
5
298
298
397
1207.5
10.0 | 21
2
-1
2
139
139
139
397
1207.5
10.0 | 24
3
0
2
159
159
397
1207.5
10.0 | 67
10
-5
5
766
766
397
1207.5
12.5 | 65
1
0
771
771
397
1207.5
12.5 | 98
3
656
695
-39
358
1206.0
12.5 | | AVE POWER N
PEAK POW MV
ENERGY GWH | 615.5 | 35
114
12.6 | 47
114
7.9 | 82
114
17.6 | 82
114
58.7 | 91
114
67.8 | 95
114
68.6 | 95
114
70.9 | 96
115
71.3 | 95
117
68.7 | 67
117
49.9 | 36
117
12.8 | 36
117
6.0 | 36
117
6.8 | 44
78
32.9 | 45
78
33.2 | 44
76
29.7 | | GAVINS POI
NAT INFLOW
DEPLETION
REGULATED FI
KAF
KCFS | 550
247
OW AT SIC
15011 | 36
6 | 17
3 | 22
4
443
24.8 | 77
20
1473
24.8 | 144
34
1752
28.5 | 106
30
1742
29.3 | 47
36
1733
28.2 | 22
34
1710
27.8 | 15
22
1629
27.4 | 14
9
1173
19.1 | 10
6
302
10.1 | 4
3
141
10.1 | 5
3
161
10.1 | 10
12
764
12.4 | -5
13
753
12.3 | 26
13
708
12.8 | | - TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWE | 15498
2592
3
1 1630
39829 | 880
54
82
40412 | 411
25
-3
40593 | 528
32
-21
40624 | 1638
254
-58
40477 | 2096
530
-50
40241 | 3595
1058
36
41071 | 1934
790
5
103
40385 | 769
242
3
320
38885 | 643
-92
27
393
37624 | 781
-32
66
337
36994 | 367
-71
18
151
36996 | 171
-33
-60
71
36929 | 195
-38
-21
81
36899 | 408
-73
-19
174
36423 | 407
-55
-2
36129 | 675
1
3 | | AVE POWER M
PEAK POW MW
ENERGY GWH
DAILY GWH | | 526
2024
189.3
12.6 | 663
2022
111.3
15.9 | 810
2021
174.9
19.4 | 903
2019
650.0
21.7 | 1059
2015
787.8
25.4 | 1008
2065
725.9
24.2 | 1063
2050
790.8
25.5 | 1003
2030
746.2
24.1 | 738
1993
531.3
17.7 | 622
1972
462.9
14.9 | 396
1971
142.6
9.5 | 500
1971
84.0
12.0 | 531
1972
101.9
12.7 | 674
1943
501.3
16.2 | 681
1956
506.4
16.3 | 681
1964
457.4
16.3 | | | INI-SUM | 15MAR | 22MAR | 31MAR | 30APR | 31MAY | 30JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 30NOV | 31DEC | 31JAN | 28FEB | DATE OF STUDY 08/06/03 1 | DATE OF STU | | | | | PRELIMINARY 2003-2004 AOP MEDIAN RUNOFF 99001 9901 4 PAGE 1 CWCP, FLOW TO TARGET, 40-DAY SHORTENED SEASON STUDY NO 9 | | | | | | | | | | 1 | | | |---|---|---|--|---
---|--|---|--|--|--|---|--|--|---|--|--|---| | TIME OF STU | DY 07:42:
FEB04 | 21 | 200- | 1 | | | | | KCEPT AS | | | EASON | | 200 | | NO | 9 | | 23 | INI-SUM | 15MAR | | | 30APR | 31 MA Y | 3 0 JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | | 31DEC | 31JAN | 28FEB | | FORT PEC
NAT INFLOW
DEPLETION
EVAPORATIO
MOD INFLOW
RELEASE
STOR CHANG
STORAGE
ELEV FTMSI
DISCH KCFS | 7400
121
N 383
6896
5175
E 1720
10398
2209.0 | 263
179
84
10482
2209.5 | 123
1
123
69
53
10535
2209.8
5.0 | 158
1
158
89
68
10604
2210.2
5.0 | 628
29
599
357
242
10846
2211.7
6.0 | 1210
259
951
461
490
11336
2214.6
7.5 | 1851
386
1465
506
959
12295
2220.0
8.5 | 829
145
23
661
492
169
12464
2221.0
8.0 | 324
-83
73
334
461
-127
12337
2220.3
7.5 | 319
-99
92
326
325
1
12338
2220.3 | 398
-68
81
385
252
133
12471
2221.0
4.1 | 188
-35
37
185
122
63
12535
2221.4
4.1 | 88
-16
17
87
97
-11
12524
2221.3
7.0 | 100
-18
20
99
127
-28
12496
2221.2
8.0 | 310
-125
42
393
553
-161
12335
2220.3 | 261
-152
413
584
-171
12164
2219.3
9.5 | 349
-105
454
500
-46
12118
2219.1
9.0 | | POWER
AVE POWER
PEAK POW M
ENERGY GWH | W | 74
139
26.6 | 62
139
10.4 | 62
139
13.4 | 75
141
53.7 | 94
144
70.1 | 109
196
78.3 | 104
197
77.3 | 98
196
72.6 | 71
196
51.2 | 53
197
39.8 | 54
197
19.3 | 91
197
15.3 | 104
197
20.0 | 117
196
87.0 | 123
195
91.4 | 116
195
78.1 | | GARRISC NAT INFLOW DEPLETION CHAN STOR EVAPORATIC REG INFLOW RELEASE STOR CHANG STORRAGE ELEV FIMSL DISCH KCFS POWER | 11001
1212
-5
N 449
14510
12409
E 2100
12506
1816.9 | 27
634
417
218 | 219
19
11
280
194
86
12810
1818.1
14.0 | 282
24
346
250
96
12906
1818.5
14.0 | 853
56
-11
1143
893
251
13157
1819.5
15.0 | 1423
213
-16
1655
1076
579
13736
1821.8
17.5 | 2958
750
-11
2703
1190
1513
15249
1827.6
20.0 | 2066
574
5
27
1962
1199
763
16012
1830.3 | 581
66
5
86
895
1168
-273
15739
1829.4
19.0 | 497
-111
21
108
846
941
-95
15644
1829.0
15.8 | 454
8
14
94
618
706
-88
15556
1828.7 | 192
-97
0
43
367
342
25
15581
1828.8
11.5 | 89
-45
-30
20
182
208
-26
15555
1828.7
15.0 | 102
-51
-10
23
248
286
-38
15517
1828.6
18.0 | 253
-105
-10
49
852
1199
-347
15170
1827.3
19.5 | 237
-83
-5
899
1230
-331
14839
1826.1
20.0 | 326
-47
5
878
1111
-233
14606
1825.2
20.0 | | AVE POWER
PEAK POW M
ENERGY GWH | W 1738.8 | 153
320
55.2 | 154
321
25.9 | 154
322
33.4 | 166
325
119.7 | 196
332
145.6 | 230
349
165.3 | 230
357
171.3 | 226
354
168.0 | 188
353
135.1 | 136
352
101.3 | 136
352
49.1 | 177
352
29.8 | 212
351
40.8 | 229
348
170.2 | 233
344
173.0 | 231
341
155.2 | | -OAHE- NAT IMPLOW DEPLETION CHAN STOR EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER | 2300
585
8
N 408
13724
11570
E 2154
13088 | 22
37
748
369
378
13466 | 148
10
332
204
127
13594
1588.3
14.7 | 190
13
426
260
167
13761
1589.0
14.5 | 364
46
-5
1206
977
229
13989
1589.9
16.4 | 236
64
-12
1236
1069
167
14156
1590.6
17.4 | 689
123
-12
1744
988
756
14913
1593.6
16.6 | 162
143
2
25
1195
1498
-303
14610
1592.4
24.4 | 33
93
2
77
1033
1430
-396
14214
1590.8
23.2 | 118
23
15
98
954
584
370
14583
1592.3
9.8 | 14
-8
20
86
662
900
-238
14345
1591.4
14.6 | 5
2
0
39
307
259
48
14393
1591.6
8.7 | 2
1
-16
18
175
129
47
14440
1591.8
9.3 | 3
1
-14
21
253
146
107
14547
1592.2
9.2 | -20
11
-7
45
1116
930
185
14732
1592.9
15.1 | 16
-2
1211
942
270
15002
1594.0
15.3 | 40
25
1126
886
240
15242
1594.9
15.9 | | AVE POWER
PEAK POW M
ENERGY GWH | W | 144
610
51.7 | 171
613
28.7 | 170
616
36.7 | 193
621
138.6 | 205
624
152.3 | 198
639
142.3 | 291
633
216.2 | 275
625
204.8 | 117
632
84.0 | 174
628
129.5 | 103
629
37.2 | 110
630
18.5 | 110
632
21.0 | 181
635
134.4 | 184
641
136.7 | 192
645
129.2 | | BIG BEN EVAPORATIO REG INFLOW RELEASE STORAGE ELEV FIMSL DISCH KCFS POWER AVE POWER PEAK POW M ENERGY GWH | N 103
11467
11467
1682
1420.0
15.3 | 369
369
1682
1420.0
12.4
59
517
21.2 | 204
204
1682
1420.0
14.7
69
509
11.6 | 260
260
1682
1420.0
14.5
68
509
14.7 | 977
977
1682
1420.0
16.4
77
509
55.4 | 1069
1069
1682
1420.0
17.4
81
509
60.6 | 988
988
1682
1420.0
16.6
78
509
56.0 | 6
1492
1492
1682
1420.0
24.3
114
509
84.5 | 20
1410
1410
1682
1420.0
22.9
108
518
80.7 | 25
559
559
1682
1420.0
9.4
48
538
34.3 | 22
878
878
1682
1420.0
14.3
72
538
53.6 | 10
249
249
1682
1420.0
8.4
42
538
15.3 | 5
124
124
1682
1420.0
8.9
45
538
7.6 | 5
141
141
1682
1420.0
8.9
45
538
8.6 | 11
919
919
1682
1420.0
14.9
75
538
55.8 | 942
942
1682
1420.0
15.3
75
538
56.1 | 886
886
1682
1420.0
15.9
77
529
51.4 | | FORT RAND NAT INFLOW DEPLETION EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER | 900
80
N 104
12176
12177
E -1
3124
1350.0
9.6 | 122
1
490
199
291
3415
1353.6
6.7 | 57
1
261
127
134
3549
1355.2
9.1 | 73
1
332
332
3549
1355.2
18.6 | 115
4
1088
1088
3549
1355.2
18.3 | 140
9
1200
1200
3549
1355.2
19.5 | 185
12
1161
1161
3549
1355.2
19.5 | 74
18
8
1540
1540
0
3549
1355.2
25.0 | 57
15
25
1427
1601
-174
3375
1353.1
26.0 | 42
7
26
560
1535
-975
2400
1339.3
25.8 | 2
1
18
861
964
-103
2296
1337.5
15.7 | 2
1
8
242
242
0
2296
1337.5
8.1 | 1
0
4
120
121
0
2296
1337.5
8.7 | 1
1
4
137
137
0
2296
1337.5
8.6 | 10
3
10
916
713
203
2499
1341.0
11.6 | 3
939
689
250
2749
1344.8
11.2 | 19
3
902
528
374
3123
1350.0
9.5 | | PEAK POW M
ENERGY GWH
GAVINS PO | 1192.2 | 350
20.0 | 355
13.0 | 355
34.0 | 355
111.4 | 355
122.8 | 355
118.8 | 355
157.0 | 348
161.8 | 291
145.0 | 283
85.5 | 283
21.4 | 283
10.7 | 283
12.1 | 300
63.9 | 317
63.8 | 338
51.0 | | NAT INFLOW DEPLETION CHAN STOR EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER | 13474
13474
E
358 | 92
0
6
298
298
358
1206.0
10.0 | 43
0
-5
165
165
358
1206.0
11.9 | 55
0
-18
370
370
358
1206.0
20.7 | 148
5
1
1232
1232
358
1206.0
20.7 | 174
19
-2
1353
1353
358
1206.0
22.0 | 166
24
0
1303
1303
358
1206.0
21.9 | 86
39
-11
2
1574
1574
358
1206.0
25.6 | 103
10
-2
7
1685
1672
13
371
1206.5
27.2 | 77
-5
0
9
1609
1583
26
397
1207.5
26.6 | 122
2
19
8
1094
1094
397
1207.5
17.8 | 50
5
14
4
298
298
397
1207.5
10.0 | 23
2
-1
2
139
139
397
1207.5
10.0 | 27
3
0
2
159
159
397
1207.5
10.0 | 77
10
-6
4
770
770
397
1207.5
12.5 | 79
1
1
767
767
397
1207.5
12.5 | 127
3
658
697
-39
358
1206.0
12.5 | | AVE POWER I
PEAK POW MI
ENERGY GWH | | 35
114
12.6 | 42
114
7.0 | 71
114
15.4 | 71
114
51.4 | 76
114
56.3 | 75
114
54.2 | 88
114
65.1 | 93
115
69.3 | 92
117
66.6 | 63
117
46.8 |
36
117
12.8 | 36
117
6.0 | 36
117
6.8 | 45
78
33.1 | 44
78
33.0 | 44
76
29.7 | | GAVINS PO. NAT INFLOW DEPLETION REGULATED FI KAF KCFS | 1550
247
GOW AT SIC
14777 | 169
6 | 79
3 | 102
4
467
26.2 | 199
20
1411
23.7 | 310
34
1629
26.5 | 224
30
1497
25.2 | 129
36
1667
27.1 | 96
34
1734
28.2 | 60
22
1621
27.2 | 42
9
1127
18.3 | 16
6
308
10.4 | 7
3
144
10.4 | 9
3
164
10.4 | 21
12
779
12.7 | 5
13
759
12.4 | 82
13
766
13.8 | | - TOTAL-
NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION
STORAGE
SYSTEM POWN | 24601
2359
-5
1 1486
41156 | 1435
72
69
42127 | 669
33
6
42528 | 860
43
-18
42860 | 2307
160
-15
43581 | 3493
598
-30
44817 | 6073
1325
-22
48045 | 3346
955
-3
91
48675 | 1194
135
6
288
47717 | 1113
-163
28
358
47043 | 1032
-56
53
309
46748 | 452
-118
14
139
46884 | 211
-55
-47
65
46894 | 241
-63
-24
74
46935 | 651
-194
-23
162
46816 | 582
-202
-7
46834 | 943
-111
8
47130 | | AVE POWER N
PEAK POW MW
ENERGY GWH
DAILY GWH | 6631.1 | 12.5 | 575
2051
96.6
13.8 | 683
2056
147.6
16.4 | 736
2065
530.2
17.7 | 817
2078
607.7
19.6 | 854
2162
614.9
20.5 | 1037
2165
771.4
24.9 | 1018
2157
757.1
24.4 | 717
2127
516.1
17.2 | 614
2115
456.5
14.7 | 431
2117
155.2
10.3 | 523
2117
87.9
12.6 | 570
2119
109.3
13.7 | 732
2095
544.4
17.6 | 745
2113
554.0
17.9 | 736
2124
494.6
17.7 | | | INI-SUM | 15MAR | 22MAR | 31MAR | 30APR | 31MAY | 30JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 30NOV | 31DEC | 31JAN | 28FEB |